首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3294篇
  免费   209篇
  2023年   6篇
  2022年   14篇
  2021年   36篇
  2020年   38篇
  2019年   61篇
  2018年   45篇
  2017年   58篇
  2016年   70篇
  2015年   117篇
  2014年   106篇
  2013年   189篇
  2012年   222篇
  2011年   201篇
  2010年   141篇
  2009年   128篇
  2008年   222篇
  2007年   243篇
  2006年   214篇
  2005年   196篇
  2004年   212篇
  2003年   204篇
  2002年   200篇
  2001年   51篇
  2000年   53篇
  1999年   53篇
  1998年   35篇
  1997年   25篇
  1996年   33篇
  1995年   24篇
  1994年   26篇
  1993年   20篇
  1992年   24篇
  1991年   33篇
  1990年   18篇
  1989年   11篇
  1988年   14篇
  1987年   17篇
  1986年   11篇
  1985年   13篇
  1984年   19篇
  1983年   11篇
  1982年   8篇
  1980年   6篇
  1979年   9篇
  1976年   6篇
  1975年   7篇
  1973年   7篇
  1972年   7篇
  1970年   7篇
  1969年   5篇
排序方式: 共有3503条查询结果,搜索用时 296 毫秒
1.
Visceral glomerular epithelial cells (GEC), also known as podocytes, are vital for the structural and functional integrity of the glomerulus. The actin cytoskeleton plays a central role in maintaining GEC morphology. In a rat model of experimental membranous nephropathy (passive Heymann nephritis (PHN)), complement C5b-9-induced proteinuria was associated with the activation of the actin regulator small GTPase, RhoA. The mechanisms of RhoA activation, however, remained unknown. In this study, we explored the role of the epithelial guanine nucleotide exchange factor, GEF-H1, in complement-induced RhoA activation. Using affinity precipitation to monitor GEF activity, we found that GEF-H1 was activated in glomeruli isolated from rats with PHN. Complement C5b-9 also induced parallel activation of GEF-H1 and RhoA in cultured GEC. In GEC in which GEF-H1 was knocked down, both basal and complement-induced RhoA activity was reduced. On the other hand, GEF-H1 knockdown augmented complement-mediated cytolysis, suggesting a role for GEF-H1 and RhoA in protecting GEC from cell death. The MEK1/2 inhibitor, U0126, and mutation of the ERK-dependent phosphorylation site (T678A) prevented complement-induced GEF-H1 activation, indicating a role for the ERK pathway. Further, complement induced GEF-H1 and microtubule accumulation in the perinuclear region. However, both the perinuclear accumulation and the activation of GEF-H1 were independent of microtubules and myosin-mediated contractility, as shown using drugs that interfere with microtubule dynamics and myosin II activity. In summary, we have identified complement-induced ERK-dependent GEF-H1 activation as the upstream mechanism of RhoA stimulation, and this pathway has a protective role against cell death.  相似文献   
2.
Abstract: To investigate the role of phosphorylation in the turnover and transport of neurofilament (NF) proteins in vivo, we studied their solubility properties and axonal transport in the rat sciatic nerve using phosphatase inhibitors to minimize dephosphorylation during preparation. About 20% of the 200-kDa subunit (NF-H) in the axon was soluble in the 1% Triton-containing buffer under the present conditions, whereas this amount was less and more variable in the absence of phosphatase inhibitors. The 68-kDa subunit (NF-L) was exclusively insoluble and not affected by the inhibitors. Such selective solubilization of NF-H by phosphorylation differed significantly from the in vitro phosphorylation with cyclic AMP-dependent protein kinase, which resulted in NF disassembly. The carboxy-terminal phosphorylation state of NF-H probed with the phosphorylation-sensitive antibodies was also not directly related to solubility. The solubility of NF-H did not differ along the nerve. In contrast, the solubility of l -[35S]methionine-labeled, transported NF-H was lowest at the peak of radioactivity. Higher solubility at the leading edge, regardless of its location along the nerve, indicates that NF-H solubility is positively correlated with the rate of NF transport.  相似文献   
3.
4.
5.
Summary A new haptenic compound, a muramyl dipeptide (MDP) derivative (designated as L4-MDP-ONB) cross-reactive with Bacillus Calmette Guerin (BCG) was synthesized. The cross-reactivity of L4-MDP hapten to BCG was demonstrated from the following evidence; (a) lymph node cells from BCG-primed C3H/HeN mice exhibited appreciable L4-MDP-specific proliferative responses to the in vitro stimulation of L4-MDP-modified syngeneic cells (L4-MDP-self); (b) inoculation of L4-MDP-self into footpads of BCG-primed C3H/HeN mice elicited ample delayed type-hypersensitivity (DTH) responses in vivo as measured by footpad swelling; and (c) BCG-primed mice contained L4-MDP-reactive helper T cell activity which functions to augment the generation of effector T cell responses to cell surface antigens. This crossreactivity between L4-MDP hapten and BCG as measured by the helper T cell activity was applied to enhanced induction of tumor-specific immunity. When BCG-primed C3H/HeN mice were immunized with L4-MDP-modified syngeneic X5563 tumor cells, these mice could generate augmented tumor-specific in vivo protective (tumor neutralizing) immunity as well as in vitro cytotoxic T cell responses. These results indicate the effectiveness of L4-MDP hapten in augmenting tumor-specific immunity. The present approach is discussed in the context of potential advantages of this new hapten for its future application to clinical tumor systems.  相似文献   
6.
7.
8.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   
9.
10.
Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号