首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的:探讨Notch信号对骨形态发生蛋白4(bone morphogenetic protein 4,BMP4)诱导间充质干细胞成骨分化的影响以及作用机制。方法:(1)DAPT或Ad-dominant-negative mutants of Notch1(Addn Notch1)和BMP4-CM处理小鼠胚胎成纤维细胞,检测早期成骨指标碱性磷酸酶(alkaline phosphatase,ALP);(2)茜素红S染色实验检测晚期成骨钙盐沉积情况;(3)半定量反转录聚合酶链反应(RT-PCR)检测成骨分化相关基因ALP,Runx2,Col1a1的表达;(4)免疫细胞化学检测p-Smad1/5/8的表达;(5)结晶紫染色和流式细胞术检测细胞的增殖及周期改变。结果:(1)DAPT抑制BMP4诱导的早期成骨分化,且呈浓度依赖性;(2)Delta-like 1(DLL1)促进BMP4诱导的成骨分化,DAPT和dn Notch1抑制BMP4诱导的成骨分化;(3)DLL1促进BMP4诱导的成骨相关基因ALP,Runx2,Col1a1的表达,DAPT抑制这些基因的表达;(4)DLL1促进BMP4诱导的细胞核内p-Smad1/5/8的表达,而DAPT抑制其表达;(5)DLL1促进BMP4诱导的细胞增殖,而DAPT抑制BMP4诱导的细胞增殖。结论:Notch信号通过BMP/Smads信号通路促进BMP4诱导的MSCs成骨分化,在此过程中也有促细胞增殖的作用。  相似文献   

2.
人毛乳头细胞组织化学研究   总被引:4,自引:0,他引:4  
毛乳头细胞是一种高度特殊化的成纤维细胞。本文通过对体外培养的毛乳头细胞进行组织化学染色研究发现,它对阿新蓝、甲苯胺蓝和PAS染色均呈阳性,并对甲苯胺蓝显异染性.与原位时的细胞染色结果相同,表明在体外培养下.毛乳头细胞合成和分泌酸性、中性粘多糖的能力仍能维持较长时间;在细胞聚集区和多层化细胞团中有丰富的细胞外基质,阿新蓝和PAS染色呈强阳性,说明细胞外基质的存在与毛乳头细胞的聚集有很大关系;另外毛囊真皮鞘细胞对阿新蓝、甲苯胺蓝染色呈阳性反应.无甲苯胺蓝的异染性,PAS染色阴性,而真皮成纤维细胞这些染色均阴性,说明它与毛乳头细胞关系密切。  相似文献   

3.
PDGF在大鼠断层供皮区创面愈合过程中表达变化的研究   总被引:2,自引:0,他引:2  
实验研究已经证明Platelet-derivedgrowthfactor(PDGF)能够促进各种类型的伤口愈合,然而在伤口愈合过程中内源性PDGF表达变化的研究却少有报道,为探讨PDGF对伤口愈合的影响,我们应用原位杂交、斑点杂交技术观察了内源性PDGF在大鼠创面愈合过程中的表达变化,结果发现:在创面愈合过程中,肉芽组织中的成纤维细胞,毛细血管内皮细胞及创缘真皮内的毛囊上皮细胞均能表达PDGF-BB基因,在伤后6天,组织修复的高峰期,PDGF-BB基因表达达到最强,伤后12天,伤口完全上皮化,PDGF的基因表达也恢复正常,说明PDGF的基因表达和伤口愈合时间有密切的关系。提示PDGF在创面愈合过程中可能起着重要的调控作用。  相似文献   

4.
该文研究了Notch信号在骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)诱导小鼠胚胎成纤维细胞(mouse embryonic fibroblasts,MEFs)成骨分化中的作用及机制。利用过表达Notch配体之一DLL1的腺病毒(adenovirus-delta-like 1,Ad-DLL1)、显性负性突变型Notch1受体的腺病毒(adenovirus-dominant-negative mutant of Notch1,Ad-dn Notch1)或γ-分泌酶抑制剂{N-[N-(3,5-difluorophena-cetyl-L-alanyl)]-S-phenylglycine t-butyl ester,DAPT}处理MEFs,细胞化学染色和/或活性测定检测碱性磷酸酶(alkaline phosphatase,ALP)表达、钙盐沉积;q RT-PCR、Western blot、荧光素酶分别检测BMP2信号I、II型受体和成骨基因表达、Smad1/5/8蛋白磷酸化水平及Smad结合元件(Smad-binding element,SBE)转录活性。结果显示,DLL1促进BMP2介导MEFs早晚期成骨分化,并上调ALK2等受体的m RNA水平、Smad1/5/8的磷酸化水平及SBE转录活性;与之相对应,dn Notch1和DAPT抑制上述指标。Notch经典靶基因发状分裂相关增强子1(hairy/enhancer-of-split related with YRPW motif 1,Hey1)可促进BMP2诱导成骨分化,并逆转DAPT对BMP2诱导成骨分化的抑制作用。该研究结果提示,Notch信号促进BMP2诱导MEFs成骨分化,可能是通过激活BMP2/Smads通路实现的,这一过程中Hey1发挥了重要作用。  相似文献   

5.
为了观察SDF-1/CXCR4信号轴在BMP9促C2C12细胞成骨分化过程中的作用,通过重组腺病毒过表达BMP9,检测对C2C12细胞中SDF-1及受体CXCR4 mRNA和蛋白表达水平的影响;同时利用重组腺病毒或中和抗体干扰SDF-1/CXCR4,与BMP9先后作用于C2C12细胞,通过定量测定碱性磷酸酶(ALP)、染色测定ALP表达、免疫细胞化学测定骨钙蛋白(OCN)表达、茜素红S染色测定钙盐沉积、Real-time PCR检测成骨相关转录因子Runx2和Osx的表达、Western blot检测成骨分化信号通路MAPK和Smad的变化。结果显示,BMP9能明显抑制C2C12细胞中SDF-1、CXCR4的表达(P<0.01),且具有剂量和时间依赖性;预先干扰SDF-1/CXCR4能明显影响由BMP9介导的早、中期成骨标志物ALP、OCN及早期转录因子Runx2、Osx的表达(P<0.01)和MAPK、Smad信号通路相关蛋白的变化(P<0.05);外源性SDF-1并不能影响晚期成骨标志物钙盐沉积。提示SDF-1/CXCR4信号轴在由BMP9介导的C2C12细胞成骨分化早、中期过程中发挥重要作用。  相似文献   

6.
目的:研究和确认RUNX2在骨形态发生蛋白9(BMP9)诱导的间充质干细胞C3H10T1/2成骨分化中的作用。方法:通过Western blot、RT-PCR、荧光素酶活性分析检测BMP9对RUNX2表达的影响;分别在过表达RUNX2和RNA干扰抑制RUNX2表达的情况下,利用碱性磷酸酶(ALP)活性测定和染色、钙盐沉积实验,免疫细胞化学和裸鼠皮下异位成骨实验分析RUNX2对于BMP9诱导的间充质干细胞成骨分化的影响。结果:BMP9可以促进RUNX2的表达;RUNX2体外可促进BMP9诱导的C3H10T1/2的ALP活性和钙盐沉积,却抑制了OCN表达,RUNX2还可促进BMP9诱导的裸鼠皮下异位成骨;而在降低RUNX2表达后,BMP9诱导的C3H10T1/2细胞的ALP活性、钙盐沉积、OCN表达和裸鼠皮下异位成骨均受到抑制。结论:RUNX2可以促进BMP9诱导的间充质干细胞C3H10T1/2细胞成骨分化。  相似文献   

7.
本研究旨在观察重组人源胶原蛋白(recombinant human collagen,r-hc)对小鼠皮肤激光损伤的修复作用,初步探索其作用机制。应用458~514 nm激光照射小鼠背部皮肤制作皮肤损伤模型,将r-hc外涂于创伤皮肤,剂量为8 mg/mL(生理盐水配制),每天涂抹1次,连续给药14 d。分别于给药后1、4、7、14 d用双光子显微镜收集二次谐波(second harmonic generation,SHG)信号检测伤口真皮中的胶原纤维,并进行常规HE染色,观察伤口局部的病理学改变。体外试验检测r-hc对人皮肤角质形成细胞和成纤维细胞增殖活力的影响,计算细胞存活率。在小鼠模型上显示,与对照组相比,r-hc可明显加速伤口的愈合,缩短伤口愈合时间; SHG显示r-hc能够促进创伤局部胶原的产生;体外试验也显示它有促进人皮肤成纤维细胞和角质形成细胞增殖的能力。由此可见,r-hc(8 mg/mL)对小鼠激光损伤皮肤有修复作用,可能是通过促进表皮角质细胞和真皮成纤维细胞的增殖,促进胶原的沉积而发挥修复作用的。  相似文献   

8.
目的研究皮肤疤痕组织形成过程中皮肤干细胞分布、增殖分化迁移特征,初步探讨这些特征与皮肤创伤修复的关系。方法利用眼科显微外科剪对2日龄昆明小鼠背部皮肤进行人工统一造创,定期获取皮肤创面样品,常规病理染色观察创面愈合形态;应用免疫荧光染色法,以细胞转录因子Sox2和角蛋白14抗体分别检测皮肤干细胞的分布及干细胞增殖分化时所形成的短暂扩增细胞,并结合细胞增殖EdU荧光染色初步分析皮肤干细胞的迁移方向。结果创面愈合过程中表皮层中表达Sox2的阳性细胞逐渐连贯,并且发现真皮乳头层中Sox2和角蛋白14同时大量表达,可见致密细胞网和向下凸起的新生毛囊样结构形成。同时,创面愈合初期细胞迁移主要由创面底部开始,向上迁移并填充创面。结论创面愈合过程中,创面底部皮肤干细胞首先开始大量分裂增殖,并向创面迁移,创面上部皮肤干细胞分裂增殖迟于创面底部;迁移的皮肤干细胞以不对称分裂的形式增殖形成大量短暂扩增细胞,并在增厚的疤痕乳头层部位形成毛囊样结构填充皮肤疤痕。  相似文献   

9.
孤儿核受体SHP(small heterodimer partner)是核受体超家族中的一员,具有LXXLL模体及配体结合域,但无经典的DNA结合域.它可与多种转录因子结合,调节细胞的增殖、分化和代谢等生物学过程.但目前关于SHP在BMP9诱导成骨分化中的确切作用却尚不清楚.本研究证明,SHP参与BMP9诱导的C3H10T1/2细胞成骨分化. RT-PCR结合Western印迹方法检测蛋白揭示,异位表达BMP9上调了SHP在C3H10T1/2细胞中的表达. 小干扰RNA敲减SHP基因在C3H10T1/2细胞的表达下调了成骨相关基因Runx2、Id1、Id2及CTGF的表达,而过表达BMP9则可上调这些基因的表达.碱性磷酸酶(ALP)活性测定/染色及茜素红染色显示,敲减核受体SHP基因可抑制BMP9的成骨分化作用,而过表达BMP9可部分消除SHP 敲减导致的成骨抑制作用.上述结果提示,核受体SHP为BMP9诱导的C3H10T1/2细胞成骨分化所必需. 究竟BMP9如何上调SHP基因表达,以及SHP究竟通过何种机制上调BMP9下游成骨分化相关基因的表达尚待进一步研究.  相似文献   

10.
目的:探讨miR-21与BMP9之间的关系,明确miR-21在BMP9诱导间充质干细胞成骨分化中的作用。方法:(1)Ad-BMP9感染C3H10T1/2细胞,Real-time-PCR检测miR-21表达。RT-PCR检测ALP的表达。(2)MiR-21转染C3H10T1/2细胞,Real-time-PCR检测miR-21和BMP9表达。(3)MiR-21和BMP9-CM处理C3H10 T1/2细胞,ALP活性和染色实验检测C3H10 T1/2细胞早期成骨能力。茜素红S染色实验检测钙盐沉积情况。(4)MiR-21和BMP9-CM处理C3H10 T1/2细胞,Real-time-PCR检测成骨分化相关因子ALP,OCN的表达。(5)MiR-21和BMP9-CM处理C3H10T1/2细胞,Western blot检测p-Smad1/5蛋白水平的表达。结果:(1)BMP9暂时降低miR-21的表达。MiR-21也可以暂时降低BMP9的表达。(2)MiR-21可以协同BMP9增强ALP和钙盐沉积。(3)MiR-21协同BMP9增加了p-Smad1/5蛋白水平的表达。结论:MiR-21与BMP9存在相互关系,两者可以互相调节表达。MiR-21可以协同BMP9促进间充质干细胞C3H10T1/2细胞成骨分化,这一过程与增强BMP9/Smad信号的激活程度有关。  相似文献   

11.
The adult hair follicle has well-defined dermal and epithelial populations that display distinct developmental properties. The follicular dermal cells, namely the dermal papilla and dermal sheath, are derived from the same mesenchymal cells as dermal fibroblasts and therefore, we believed that follicular cells could be useful sources of interfollicular keratinocytes and fibroblast for skin wound repair. In this study, we evaluated the relative effect of various mesenchymal-derived cells on wound healing following skin injury. Human dermal cells, including two different follicular dermal cells and skin fibroblasts were cultured in collagen sponges and compared with respect to wound healing. Results indicated that there was no significant difference in wound contraction and angiogenesis among the cell types. Further, dermal sheath cells exhibited relatively poor results compared with other cells in new collagen synthesis. Finally, basement membrane reformation and new collagen synthesis for the dermal papilla cell grafts was superior to those of the dermal sheath cells or fibroblasts.  相似文献   

12.
13.
The biochemical regulation of collagen deposition during adult cutaneous wound repair is poorly understood. Likewise, how collagen is perceived and modulated in fetal scarless healing remains unknown. Recently, discoidin domain receptors-1 and 2 (DDR1 and DDR2) with tyrosine kinase activity have been identified as novel receptors for collagen. In light of these findings, it was speculated that the production of collagen receptors DDR1 and DDR2 by fetal fibroblasts may be temporally regulated to correlate with the ontogeny of embryonic scar formation. More specifically, because DDRs directly bind collagen and transmit the signals intracellularly, it was hypothesized that they may play an important role in fetal scarless healing by ultimately regulating and modulating collagen production and organization. As part of a fundamental assessment to elucidate the role of DDRs in scarless fetal wound repair, the endogenous expression of DDR1, DDR2, collagen I, and total collagen, as a function of fetal Sprague-Dawley rat skin fibroblasts of different gestational ages, representing scar-free (E16.5) periods was determined. Using explanted dermal fibroblasts of gestational days E13.5, E16.5, E18.5, and E21.5 (term gestation = 21.5 days) fetuses (n = 92), [3H]proline incorporation assay and Northern and Western blotting analysis were performed to compare the expressions of these molecules with scar-free and scar-forming stages of embryonic development. These results revealed a pattern of increasing collagen production with increasing gestational ages, whereas DDR1 expression decreased with increasing gestational age. This observation suggests that elevated levels of DDR1 may play an important role in scarless tissue regeneration by early gestation fetal fibroblasts. In contrast, DDR2 was expressed by fetal rat fibroblasts at a similar level throughout gestation. These data demonstrate for the first time the temporal expression of collagen and DDR tyrosine kinases in fetal rat fibroblasts as a function of gestational ages. Overall, these data suggest that differential temporal expression of the above-mentioned molecules during fetal skin development may play an important role in the ontogeny of scar formation. Future studies will involve the characterization of the biomolecular functions of these receptor kinases during fetal wound repair.  相似文献   

14.
Cyclophilin C-associated protein (CyCAP) is identified from macrophages. It locates in intracellular, membrane bound and extracellular, suggesting it has an important role, however both of its regulation and function have not been elucidated. The expression of CyCAP in skin and during wound healing is also unknown. We demonstrate that CyCAP is expressed in both dermal fibroblasts and keratinocytes. In the dermis, the majority of CyCAP protein is located intracellular in a filamentous protein form while a lesser amount is in the extracellular matrix (ECM). CyCAP gene and protein expression is increased 1 day after skin wound healing in both fetal and adult rats and remains elevated level up to 1 week in adult rats. Immunohistochemistry studies demonstrate that the increased CyCAP expression locates mainly to inflammatory cells, including macrophages, monocytes and lymphocytes during wound healing. Interferon-gamma increases CyCAP gene and protein expression in cultured rat fibroblasts. We also found that wound healing is slower and less collagen is expressed in skin of CyCAP null mice. These data are the first observations of CyCAP expression in skin and during wound repair. Our data indicates that CyCAP is regulated by IFNgamma and may function on immune defense in macrophages, lymphocytes, dermal fibroblasts and keratinocytes during wound healing.  相似文献   

15.
Fetal wound healing is characterized by minimal inflammation and scarless repair. IL-6 stimulates inflammation in postnatal wound healing. We hypothesized that fetal skin has a diminished IL-6 response and that exogenous IL-6 will result in scar formation. Human adult or fetal skin was placed subcutaneously in SCID mice and incisionally wounded. Wounds were excised after 4, 12, 24 or 72 h for IL-6 mRNA quantification by RT-PCR. In other grafts, 5 microgram of IL-6 was injected at wounding and then harvested at 7 days for analysis of scar formation. IL-6 production was examined in primary cultures of human fetal or adult dermal fibroblasts incubated for 8 h with 0, 0.1, 1 or 10 ng/ml of PDGF-BB. IL-6 mRNA was detected 4 h after wounding in fetal and adult wounds, but by 12 h there was no IL-6 mRNA in the fetal wounds. Adult wounds had IL-6 mRNA persisting to 72 h. IL-6 administration to fetal wounds resulted in scar formation. Fetal fibroblasts produced less IL-6 protein and mRNA at all points examined (P<0.01 vs adult). Diminished production of inflammatory cytokines such as IL-6 may be responsible for the lack of inflammation seen during fetal wound healing. Diminished inflammation may provide a permissive environment for scarless wound healing.  相似文献   

16.
Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2, -3, -8, -9, -10, -12, -13, -14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of types I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing.  相似文献   

17.
In the early to mid-gestation fetus, skin wounds heal with no scar formation and perfect restoration of dermal architecture. This phenomenon is intrinsic to fetal skin. The intrinsic phenotypic properties of the fetal fibroblast are believed to be ??the effector of scarless repair??. We sought to prepare dermal matrices with high similarity to the mid-gestation fetal dermis using the technology of ??self-assembly?? with fetal dermal cells of 18, 20, and 22?wk gestation. Comparison of these dermal constructs to those prepared with neonatal dermal cells, adult skin, neonatal foreskin, and mid-gestation fetal skin demonstrates that these fetal dermal matrices bear marked morphological and biochemical resemblance to the mid-gestation fetal dermis. In order to shed further light on the genes involved in scarless wound healing, we conducted a differential gene array analysis of the neonatal and fetal dermal matrices. Using a gene chip (GLYCOv4 gene chip) of approximately 1,260 human genes, we observed differential expression of 67 genes. A number of fibrotic genes were observed to be downregulated and anti-fibrotic genes upregulated.  相似文献   

18.
Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号