首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction of identity by descent (IBD) probabilities is essential for all methods that map quantitative trait loci (QTL). The IBD probabilities may be predicted from marker genotypes and/or pedigree information. Here, a method is presented that predicts IBD probabilities at a given chromosomal location given data on a haplotype of markers spanning that position. The method is based on a simplification of the coalescence process, and assumes that the number of generations since the base population and effective population size is known, although effective size may be estimated from the data. The probability that two gametes are IBD at a particular locus increases as the number of markers surrounding the locus with identical alleles increases. This effect is more pronounced when effective population size is high. Hence as effective population size increases, the IBD probabilities become more sensitive to the marker data which should favour finer scale mapping of the QTL. The IBD probability prediction method was developed for the situation where the pedigree of the animals was unknown (i.e. all information came from the marker genotypes), and the situation where, say T, generations of unknown pedigree are followed by some generations where pedigree and marker genotypes are known.  相似文献   

2.
In previous genome-wide association studies, marker–trait associations for grain yield and additional traits of agronomic importance were identified in the German winter barley (Hordeum vulgare L.) breeding gene pool. In the present study, seven doubled haploid populations segregating for the relevant alleles at the associated loci were used to get information whether these marker–trait associations can be verified in biparental populations and reliably used in applied barley breeding. The doubled haploid populations were phenotyped in field trials at two to five locations each in 1 year and genotyped by 40 trait-associated single nucleotide polymorphisms using an Illumina VeraCode GoldenGate assay. Large phenotypic variation was observed for all traits within at least one doubled haploid population. For 19 out of 58 marker–trait associations tested, the phenotypic means of both marker classes were significantly (p ≤ 0.005) different, thus confirming the association of the respective marker and the quantitative trait locus detected. For example, doubled haploid lines derived from a cross of ‘Malta’ × ‘Goldmine’ carrying different marker alleles differed by 0.41 t/ha in mean grain yield. The 19 (out of 58) marker–trait associations verified correspond to 10 (out of 27) genomic regions. Markers that were verified to be associated with a quantitative trait locus can be implemented directly in winter barley breeding for the selection of parental lines and marker-assisted pedigree selection.  相似文献   

3.
Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.  相似文献   

4.
The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive × additive interaction and QTL × environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0–26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL × environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum.  相似文献   

5.
The common assumption in quantitative trait locus (QTL) linkage mapping studies that parents of multiple connected populations are unrelated is unrealistic for many plant breeding programs. We remove this assumption and propose a Bayesian approach that clusters the alleles of the parents of the current mapping populations from locus-specific identity by descent (IBD) matrices that capture ancestral marker and pedigree information. Moreover, we demonstrate how the parental IBD data can be incorporated into a QTL linkage analysis framework by using two approaches: a Threshold IBD model (TIBD) and a Latent Ancestral Allele Model (LAAM). The TIBD and LAAM models are empirically tested via numerical simulation based on the structure of a commercial maize breeding program. The simulations included a pilot dataset with closely linked QTL on a single linkage group and 100 replicated datasets with five linkage groups harboring four unlinked QTL. The simulation results show that including parental IBD data (similarly for TIBD and LAAM) significantly improves the power and particularly accuracy of QTL mapping, e.g., position, effect size and individuals’ genotype probability without significantly increasing computational demand.  相似文献   

6.
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker × environment interaction effect (M × E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M × E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M × E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.  相似文献   

7.
 RAPD markers and agronomic traits were used to determine the genetic relationships among 32 breeding lines of melon belonging to seven varietal types. Most of the breeding lines were Galia and Piel de Sapo genotypes, which are currently being used in breeding programmes to develop new hybrid combinations. A total of 115 polymorphic reliable bands from 43 primers and 24 agronomic traits were scored for genetic distance calculations and cluster analysis. A high concordance between RAPDs and agronomic traits was observed when genetic relationships among lines were assessed. In addition, RAPD data were highly correlated with the pedigree information already known for the lines and revealed the existence of two clusters for each varietal type that comprised the lines sharing similar agronomic features. These groupings were consistent with the development of breeding programmes trying to generate two separate sets of parental lines for hybrid production. Nevertheless, the performance of certain hybrids indicated that RAPDs were more suitable markers than agronomic traits in predicting genetic distance among the breeding lines analysed. The employment of RAPDs as molecular markers both in germplasm management and improvement, as well as in the selection of parental lines for the development of new hybrid combinations, is discussed. Received: 25 July 1997 / Accepted: 6 October 1997  相似文献   

8.
Genotyping through the pedigrees of elite soybean [Glycine max (L.) Merr.] cultivars developed by a breeding program represents an opportunity to explore and characterize various molecular and genetic changes that are a direct result of long-term selection by soybean breeders. For soybeans bred for Ontario Canada, one such elite cultivar was OAC Bayfield, which had exceptional commercial success as well as being a parent of a number of successful cultivars developed by multiple independent breeding programs. A total of 42 genotypes from six different breeding programs, comprising the multi-generational pedigree of OAC Bayfield were genotyped with molecular markers and chromosomal inheritance was tracked throughout the pedigree. Cluster analysis showed high congruence with the known pedigree and identified three distinct ancestral groups. The ancestral genotypes contained the majority of the rare alleles, with the cultivar CNS having the greatest number of unique alleles. The graphical genotype profile for the 20 chromosomes revealed conserved allelic composition which has been assembled in certain chromosomes in the form of specific linkage blocks, which were either a result of recombination involving ancestral linkage blocks or linkage blocks introduced from the cultivar Fiskeby-V. The identification of highly structured, conserved genomic regions are important for future breeding efforts as they are indicators of preferentially selected regions, or conversely, may be a contributing factor to low genetic gains due to mass fixation across a breeding program’s germplasm.  相似文献   

9.
Ninety three recombinant inbreds of Sorghum bicolor (L. Moench) were derived from a cross between two sorghum lines GBIK and Redlan. This population was used to identify quantitative trait loci (QTLs) for resistance and tolerance to greenbug (Schizaphids graminum Rondani) Biotypes I and K. One hundred and thirteen loci (38 SSRs and 75 RAPDs) were mapped in 12 linkage groups covering 1,530 cM. In general, nine QTLs were detected affecting both resistance and tolerance to greenbug (GB) Biotypes I and K. The phenotypic variance explained by each QTL ranged from 5.6% to 38.4%. Four SSRs and one RAPD marker were associated with the expression of all resistance and tolerance traits. These markers appear to be linked to biotype non-specific resistance and tolerance genes. Four additional markers were associated with biotype-specific resistance or tolerance traits. The detection of more than one locus for each biotype supports the hypothesis that several regions, which represent different genes, control the expression of resistance and tolerance to greenbug in sorghum. The results can be used for marker-assisted selection and the breeding of greenbug-tolerant sorghum cultivars.  相似文献   

10.
The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker‐assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time‐consuming and labor‐intensive. Here we report the rapid identification of plant QTLs by whole‐genome resequencing of DNAs from two populations each composed of 20–50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL‐seq as applied to plant species. We applied QTL‐seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL‐seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps.  相似文献   

11.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

12.
Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.  相似文献   

13.
Shoot fly is one of the most important pests affecting the sorghum production. The identification of quantitative trait loci (QTL) affecting shoot fly resistance enables to understand the underlying genetic mechanisms and genetic basis of complex interactions among the component traits. The aim of the present study was to detect QTL for shoot fly resistance and the associated traits using a population of 210 RILs of the cross 27B (susceptible) × IS2122 (resistant). RIL population was phenotyped in eight environments for shoot fly resistance (deadheart percentage), and in three environments for the component traits, such as glossiness, seedling vigor and trichome density. Linkage map was constructed with 149 marker loci comprising 127 genomic-microsatellite, 21 genic-microsatellite and one morphological marker. QTL analysis was performed by using MQM approach. 25 QTL (five each for leaf glossiness and seedling vigor, 10 for deadhearts, two for adaxial trichome density and three for abaxial trichome density) were detected in individual and across environments. The LOD and R 2 (%) values of QTL ranged from 2.44 to 24.1 and 4.3 to 44.1%, respectively. For most of the QTLs, the resistant parent, IS2122 contributed alleles for resistance; while at two QTL regions, the susceptible parent 27B also contributed for resistance traits. Three genomic regions affected multiple traits, suggesting the phenomenon of pleiotrophy or tight linkage. Stable QTL were identified for the traits across different environments, and genetic backgrounds by comparing the QTL in the study with previously reported QTL in sorghum. For majority of the QTLs, possible candidate genes were identified. The QTLs identified will enable marker assisted breeding for shoot fly resistance in sorghum.  相似文献   

14.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

15.
The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.  相似文献   

16.
Genetic analysis across a whole plant genome based on pedigree information offers considerable potential for enhancing genetic gain from plant breeding programs through quantitative trait loci (QTL) mapping and marker-assisted selection. Here, we report its application for graphically genotyping varieties used in Chinese japonica rice (Oryza sativa L.) pedigree breeding programs. We identified 34 important chromosomal regions from the founder parent that are under selection in the breeding programs, and by comparing donor genomic regions that are under selection with QTL locations of agronomic traits, we found that QTL clustered in important genomic regions, in accordance with association analyses of natural populations and other previous studies. The convergence of genomic regions under selection with QTL locations suggests that donor genomic regions harboring key genes/QTL for important agronomic traits have been selected by plant breeders since the 1950s from the founder rice plants. The results provide better understanding of the effects of selection in breeding programs on the traits of rice cultivars. They also provide potentially valuable information for enhancing rice breeding programs through screening candidate parents for targeted molecular markers, improving crop yield potential and identifying suitable genetic material for use in future breeding programs.  相似文献   

17.
 We report results from a breeding strategy designed to accumulate favorable QTL alleles for grain yield identified in the SteptoeבMorex’ (SM) barley germplasm. Two map lines (SM73 and SM145) from the original mapping population were selected based on their marker genotype and QTL structure. When crossed, these lines would be expected to produce progeny with most favorable QTL alleles. One hundred doubled haploid (DH) lines from the F1 hybrid of this cross were genotyped with ten RFLP markers and one morphological marker defining grain yield to monitor QTL segregation. A subset of 24 lines representing various combinations of putatively favorable and unfavorable QTL alleles, together with Steptoe, ‘Morex’, SM73, and SM145, were phenotyped for grain yield in five environments. Multiple regression procedures were used to explore phenotype and genotype relationships. Most target QTLs showed significant effects. However, significance and magnitude of QTL effects and favorable QTL allele phase varied across environments. All target QTLs showed significant QTL-by-environment interaction (QTL×E), and the QTL on chromosome 2 expressed alternative favorable QTL alleles in different environments. Digenic epistatic effects were also detected between some QTL loci. For traits such as grain yield, marker-assisted selection efforts may be better targeted at determining optimum combinations of QTL alleles rather than pyramiding alleles detected in a reference mapping population. Received: 2 June 1998 / Accepted: 17 September 1998  相似文献   

18.
Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.  相似文献   

19.
Advances in plant breeding through marker-assisted selection (MAS) are only possible when genes or quantitative trait loci (QTLs) can contribute to the improvement of elite germplasm. A population of recombinant inbred lines (RILs) was developed for one of the best crosses of the Spanish National Barley Breeding Program, between two six-row winter barley cultivars Orria and Plaisant. The objective of this study was to identify favourable QTLs for agronomic traits in this population, which may help to optimise breeding strategies for these and other elite materials for the Mediterranean region. A genetic linkage map was developed for 217 RILs, using 382 single nucleotide polymorphism markers, selected from the barley oligonucleotide pool assay BOPA1 and two genes. A subset of 112 RILs was evaluated for several agronomic traits over a period of 2 years at three locations, Lleida and Zaragoza (Spain) and Fiorenzuola d’Arda (Italy), for a total of five field trials. An important segregation distortion occurred during population development in the region surrounding the VrnH1 locus. A QTL for grain yield and length of growth cycle was also found at this locus, apparently linked to a differential response of the VrnH1 alleles to temperature. A total of 33 QTLs was detected, most of them for important breeding targets such as plant height and thousand-grain weight. QTL × environment interactions were prevalent for most of the QTLs detected, although most interactions were of a quantitative nature. Therefore, QTLs suitable for MAS for most traits were identified.  相似文献   

20.
水稻骨干恢复系是指在杂交稻育种中广泛应用的一类恢复系。探明骨干恢复系的遗传基础,发掘其重要农艺性状基因/QTL,对分子标记辅助选择水稻恢复系育种具有重要应用价值。本研究以生产上广泛应用的三系骨干恢复系成恢727和两系骨干恢复系9311为亲本,培育了具有250个系的重组自交系群体。分别在2015年三亚和2016年合肥两个环境下进行了9个重要农艺性状表型和SSR分子标记基因型鉴定,用SAS9.2分析表型数据,用QTL Ici Mapping v4.1进行QTL定位分析。在三亚和合肥两个环境下共检测到39个QTL,三亚检测到16个,分布于第1、2、4、7、8、10、11和12染色体上;合肥检测24个,分布于第1、2、3、7、8、9、10和12染色体上。其中qPH1-1在三亚和合肥两个环境下都能检测到,加性效应分别为-1.75和-2.46。在检测到的39个QTL中,有24个QTL的增效等位基因来自恢复系成恢727,15个QTL的增效等位基因来自9311。共计有26个QTL曾被前人定位,13个属于尚未见文献报道的新QTL。另外,在RM279~RM521、RM336~RM3534、RM25~RM547、RM553~RM160、RM222~RM271区段内检测到5个多效性QTL位点。其中RM25~RM547位点与已经克隆的基因Ghd8位置相近。RM553~RM160位点是一个新的多效性位点,分别控制每穗实粒数、单株产量和结实率,而且效应和表型变异贡献率都较大。其余3个位点在前人的研究中分别有所报道,但其多效性则是在本研究中首次发现。在本研究新发掘到的QTL中,控制穗数的QTL qPN12-1,控制穗长的QTL qPL1-2和qPL10-1,控制总粒数的QTL qSNP2-1和qSNP10-1,控制结实率的QTL qSF3-1,控制千粒重QTL qTGW7-1和控制产量的QTL qGY1-1效应均比较大,解释的表型遗传变异比例也较高。本研究的结果将会为相关性状QTL的精细定位、克隆和育种应用奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号