首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
以甘南高寒草甸演替过程中5个阶段的典型群落为研究对象,对围封样地内不同演替阶段群落叶片功能性状进行比较,分析了围封地内各演替阶段群落水平上主要物种叶性状与环境因子的关系。结果显示:(1)此围封地形成了一个从草本到灌木的演替过程。随着演替的进行,Margalef指数显著增加,Shannon-Wiener指数呈先增加后降低的趋势。(2)从演替前期到演替后期,土壤有机碳(SOC)、土壤全氮(STN)、土壤含水量(SWC)逐渐升高,光照度(LI)、土壤温度(ST)逐渐降低,土壤全磷(STP)呈先降低后增加趋势;叶片有机碳(LCC)、全氮(LNC)、含水量(LWC)逐渐升高;比叶面积(SLA)、磷利用效率(PUPE)、稳定碳同位素(δ13C)逐渐下降,叶片全磷(LPC)先降低后升高,而氮利用效率(PUNE)先升高后降低。(3)RDA冗余分析表明,在此围封样地内,演替前期植物群落叶性状主要受到LI和ST的限制作用。而在演替的中后期SWC[WTBZ]是主要影响因子。此研究有助于我们认识高寒草甸生态系统的退化过程所导致的生态环境问题,进而寻求更好的草地恢复和重建方法。  相似文献   

2.
The values of many important traits of plants in a community change along environmental gradients. Such changes may involve intraspecific variation and replacement by species that have different trait values. We hypothesized that they also involve the variation within and among functional groups (FGs) to the environmental dependence of trait values at the community level. We studied environmental dependence of trait values in 27 moorlands at various scales and analyzed to what extent intraspecific variation, species replacement within FGs and FG replacement contribute to the gradient of community trait values. The community structure in moorlands was influenced mainly by two environmental factors: temperature and water condition. Plants inhabiting sites with low temperature and low-pH generally tended to have lower maximum leaf height, greater leaf mass per area, and smaller leaf size. At the community level, site-mean of maximum leaf height and leaf size generally increased with increasing temperature and water pH. Our analysis demonstrated that the relative contributions of intraspecific variation, species replacement within FGs and FG replacement differed depending on combinations of the traits and environments. The contribution of FG replacement varied considerably among cases (0.6–34.5 %). Species replacement within FGs, which has received little attention in previous studies, was most responsible for the community-level changes (31.6–65.3 %) and intraspecific variation also made a large contribution (22.9–57.9 %). Understanding such various mechanisms involving intraspecific variation and species replacement should help us better predict how the structure and functioning of moorland plant communities will respond to climate change.  相似文献   

3.
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest.  相似文献   

4.
喀斯特退化天坑阴坡阳坡壳斗科植物的功能性状特征   总被引:1,自引:0,他引:1  
喀斯特退化天坑的负地形生境中阴坡和阳坡的局域环境具有显著差异,导致植物群落类型差异明显。本研究以云南沾益退化天坑深陷塘为例,探究退化天坑阴坡与阳坡壳斗科植物功能性状特征,有助于揭示天坑的物种多样性保护库价值。结果表明: 阴坡土壤营养物质含量高于阳坡,阴坡壳斗科植物的叶面积、比叶面积和叶干重显著大于阳坡,叶厚度显著小于阳坡,叶干物质含量小于阳坡;阴坡壳斗科植物功能性状的主要环境影响因子是土壤全钾和土壤含水量,全磷是阳坡的主要环境影响因子。阴坡的叶功能性状变异程度小于阳坡,主要是以改变叶干重增加植物体内光合速率和碳积累能力的方式适应阴坡生境;阳坡通过保持较小比叶面积,增加叶面积变异程度来获得更多的资源。退化天坑深陷塘阴坡植物群落演替速度明显快于阳坡,壳斗科植物优势在阴坡逐渐减小,在阳坡仍是优势建群种。  相似文献   

5.
植物群落功能多样性对于维持生态系统功能具有十分重要的意义。该研究以青藏高原高寒草甸植物群落为研究对象,运用R软件程序包(FD、Vegan)与单因素方差分析法,分析高寒草甸不同坡向植物群落功能多样性的变化及其与环境因子的关系,以揭示微生境梯度上植物对环境的适应策略以及群落种间功能特征及生态系统内部结构和功能的变化机制。结果显示:(1)青藏高原高寒草甸的北坡和西北坡的物种丰富度、植物株高、比叶面积、叶片有机碳、叶片氮以及叶片磷显著高于其他坡向,且坡向间差异显著(P<0.05)。(2)在北坡到南坡的变化中,功能丰富度差异比较明显(P<0.05),株高、比叶面积、叶片有机碳、叶片氮及叶片磷等功能丰富度均呈递减趋势。(3)北坡的株高功能均匀度、西北坡比叶面积、叶片有机碳、叶片氮及叶片磷等功能均匀度均显著高于南坡,且多元性状功能均匀度在坡向间差异显著(P<0.05)。(4)北坡的比叶面积、叶片氮功能离散度及西北坡的株高、叶片有机碳、叶片磷等功能离散度均高于南坡,且坡向间差异显著(P<0.05)。(5)植物群落功能多样性与土壤含水量、土壤有机碳、土壤全氮、土壤全磷呈显著正相关关系(P<0.05),与坡度、土壤pH、土温、照度呈显著负相关关系(P<0.05)。  相似文献   

6.
Livestock grazing represents an important human disturbance for vegetation worldwide. We analysed the intraspecific differences in mean trait values between different grazing regimes (ungrazed and grazed) and explored whether these differences are consistent across species in a sub‐humid mountain ecosystem in Central Argentina. We selected 14 species of eight different families, co‐occurring in both regimes and comprising herbaceous (grasses and forbs) and woody (shrubs and trees) plants. For each species and grazing regime we measured 12 traits related to plant size, carbon fixation and water use. We found that plants in the grazed regime had consistently smaller leaves and shorter stature and internodal length than plants of the same species under the ungrazed regime. For the remaining traits the responses were species‐specific. Dry matter content, leaf tensile strength and minimum leaf water potential (Ψleaf) showed contrasting responses to grazing. Specific leaf area, wood density and potential water content of wood showed almost no significant responses except for very few species. Neither leaf area per shoot mass nor leaf area per sapwood area differed significantly between grazing regimes. Our study suggested that the intraspecific variation found for the size‐related traits would allow species to respond to grazing without modifying markedly other structural traits, a plastic response that might increase the probability of species success.  相似文献   

7.
叶片和根系是植物获取资源的最重要的器官,其性状随环境梯度的变化反映了植物光合碳获取和水分与养分的吸收能力及其对环境变化适应的生态对策。羌塘高原降水梯度带高寒草地群落叶片和根系成对性状关系研究不仅能揭示环境梯度对植物性状的塑造作用,也可为理解寒、旱和贫瘠等极端环境下植物的适应策略提供依据。为此,选择3组具有代表性的叶片和根系成对性状:比叶面积(SLA)和比根长(SRL);单位质量叶氮含量(LN_(mass))和单位质量根氮含量(RN_(mass));单位面积叶氮含量(LN_(area))和单位长度根氮含量(RN_(length)),分析不同优势植物地上、地下成对性状变异特征及其与环境因子的关系,探讨植物性状对高寒生态系统水分和养分限制因素的适应策略。研究表明,区域气候和土壤环境导致的叶片性状变异大于根系性状的变异,干旱端的植物既具有高的SRL,又具有高的叶片和根系的养分含量(LN_(mass),LN_(area)和RN_(mass))。SLA-SRL、LN_(mass)-RN_(mass)、LN_(area)-RN_(length)均表现为权衡关系,在干旱端(年降雨量MAP 400 mm)的高寒草原、荒漠草原和极湿润端(MAP 600 mm)的高寒草甸这种权衡关系更为明显,而中间区域(400 MAP 600 mm)的高寒草甸养分和水分限制不是很强烈,叶片和根系性状更多地表现出协同关系。从植物功能类群来看,苔草和禾草类植物叶片和根系成对性状之间具有更强烈的权衡关系。干旱端植物通过增加SRL和叶片、根系养分含量来提高水分和养分的吸收能力,同时通过叶片高的氮含量提高光合碳获取能力,保障了根系生长的物质来源,表现出地上和地下同时投入的策略。干旱端植物保持较高的养分含量是抵御和适应严酷的寒、旱和贫瘠的环境胁迫的重要策略。而在湿润端植物则采取增加SLA,维持地上光合生产力的生态策略。  相似文献   

8.
Aims Comparisons of the trait–abundance relationships from various habitat types are critical for community ecology, which can offer us insights about the mechanisms underlying the local community assembly, such as the relative role of neutral vs. niche processes in shaping community structure. Here, we explored the responses of trait–abundance relationships to nitrogen (N), phosphorus (P) and potassium (K) fertilization in an alpine meadow.Methods Five fertilization treatments (an unfertilized control and additions of N, P, K and NPK respectively) were implemented using randomized block design in an alpine Tibetan meadow. Species relative abundance (SRA), plant above-ground biomass and species richness were measured in each plot. For 24 common species, we measured species functional traits: saturated height, specific leaf area (SLA) and leaf dry matter content (LDMC) in each treatment but seed size only in the unfertilized control. Standard major axis (SMA) regression and phylogenetically independent contrasts (PICs) analysis were used to analyse species trait–abundance relationships in response to different fertilization treatments.Important findings Positive correlations between SRA and saturated height were raised following N, P and NPK fertilizations, which indicated an increase in light competition in these plots. In P fertilized plots, SRA was also positively correlated with LDMC because tall grasses with a nutrients conservation strategy often have a relative competitive advantage in capturing limited light and soil nutrients. In K fertilized plots, neither the trait–abundance relationships nor above-ground biomass or species richness significantly differed from that in the control, which suggests that K was not a limiting resource in our study site. These significant correlations between species traits and relative abundance in fertilized treatment suggest that trait-based selection plays an important role in determining species abundance within local communities in alpine meadows.  相似文献   

9.
郑梦娜  贾傲  陈之光  廣田充  唐艳鸿  杜明远  古松 《生态学报》2022,42(24):10305-10316
植物叶片对环境变化十分敏感,能反映植物适应环境所形成的生存策略。为揭示高寒植物叶片性状对海拔高度变化的响应,对位于青藏高原东北部的冷龙岭3400—4200 m之间5个不同海拔高度的矮火绒草(Leontopodium nanum)叶片进行取样,采用常规石蜡制片技术和显微观察方法测定叶片外部形态、表皮气孔特征和解剖结构,探讨其叶片性状随海拔的变化,结果表明:(1)随海拔高度升高,叶面积呈减小的趋势,而比叶重和叶干物质含量增加;(2)叶片下表皮气孔密度随海拔升高呈先增加后下降的趋势,且气孔密度、气孔器面积、长度、宽度和潜在气孔导度指数等气孔特征之间存在显著相关性;(3)叶厚、栅栏组织和海绵组织厚度随海拔升高呈显著增厚的趋势;(4)叶片解剖结构可塑性和相关性分析显示,上、下角质层厚度的可塑性指数最大,而部分解剖结构指标间存在极显著的相关性。研究表明,矮火绒草为适应沿海拔上升温度降低的环境,主要采取叶片变小、变厚的对策,使植物趋于保温、保水和抗机械损伤的方向发展,并将资源最大化地投入到自身生长发育中。  相似文献   

10.
The composition of vegetation on a slope frequently changes substantially owing to the different micro‐environments of various slope aspects. To understand how the slope aspect affects the vegetation changes, we examined the variations in leaf mass per area (LMA) and leaf size (LS) within and among populations for 66 species from 14 plots with a variety of slope aspects in a subalpine meadow. LMA is a leaf economic trait that is tightly correlated with plant physiological traits, while the LS shows a tight correlation with leaf temperature, indicating the strategy of plants to self‐adjust in different thermal and hydraulic conditions. In this study, we compared the two leaf traits between slope aspects and between functional types and explored their correlation with soil variables and heat load. Our results showed that high‐LMA, small‐leaved species were favored in south‐facing slopes, while the reverse was true in north‐facing areas. In detail, small dense‐leaved graminoids dominated the south slopes, while large thin‐leaved forbs dominated the north slopes. Soil moisture and the availability of soil P were the two most important soil factors that related to both LMA and LS, and heat load also contributed substantially. Moreover, we disentangled the relative importance of intraspecific trait variation and species turnover in the trait variation among plots and found that the intraspecific variation contributed 98% and 56% to LMA and LS variation among communities, respectively, implying a large contribution of intraspecific trait plasticity. These results indicate that LMA and LS are two essential leaf traits that affect the adaptation or acclimation of plants underlying the vegetation composition changes in different slope aspects in the subalpine meadow.  相似文献   

11.
1. Availabilities of light and soil nitrogen for understory plants vary by extent of canopy gap formation through typhoon disturbance. We predicted that variation in resource availability and herbivore abundance in canopy gaps would affect herbivory through variation in leaf traits among plant species. We studied six understory species that expand their leaves before or after canopy closure in deciduous forests. We measured the availabilities of light, soil nitrogen, soil water content, and herbivore abundance in 20 canopy gaps (28.3–607.6 m2) formed by a typhoon and in four undisturbed stands. We also measured leaf traits and herbivory on understory plants. 2. The availabilities of light and soil nitrogen increased with increasing gap size. However, soil water content did not. The abundance of herbivorous insects (such as Lepidoptera and Orthoptera) increased with increasing gap size. 3. Concentrations of condensed tannins, total phenolics, and nitrogen in leaves and the leaf mass per area increased in late leaf expansion species with increasing gap size, whereas none of the leaf traits varied by gap size in early leaf expansion species. 4. Herbivory increased on early leaf expansion species with increasing gap size, but decreased on late leaf expansion species. In these late leaf expansion species, total phenolics and C : N ratio had negative relationships with herbivory. 5. These results suggested that after typhoon disturbance, increased herbivory on early leaf expansion species can be explained by increased herbivore abundance, whereas decreased herbivory on late leaf expansion species can be explained by variation in leaf traits.  相似文献   

12.
为探讨不同入侵压力下入侵植物对本地植物功能性状土壤碳、氮、磷化学计量特征的影响,以入侵植物曼陀罗(Datura stramonium)及共存本地植物为研究对象,调查了无入侵区、轻度入侵区和重度入侵区(按入侵种盖度比例划分)的植物种类、株数、株高及本地植物群落的物种多样性,分析了各区入侵植物和本地植物叶片的比叶面积、碳含量、氮含量、碳氮比、叶片建成成本以及不同土层的碳、氮、磷化学计量特征。结果显示:随曼陀罗入侵压力的增加,本地植物种类及株数逐渐减少;曼陀罗株高和叶片氮含量在不同入侵压力下均显著高于本地植物,且随入侵压力的增加具有升高趋势;叶片碳氮比显著低于无入侵区本地植物;比叶面积、叶片碳含量和叶片建成成本等与入侵区本地植物相比不具有显著差异。随曼陀罗入侵压力的增加,土壤全氮含量、全碳含量、氮磷比与碳磷比显著增加,而全磷含量与碳氮比显著下降;土壤碳氮化学计量特征呈现出一定的表聚效应。这些研究结果表明,曼陀罗具有较高的资源捕获能力,并且改变了入侵地土壤特性,进而增强自身竞争能力以提高入侵力,这些可能是曼陀罗成功入侵的原因之一。  相似文献   

13.
Plant traits associated with resource acquisition strategies (specific leaf area (SLA), leaf dry matter content (LDMC), leaf size and plant height) change along gradients of soil properties, being the most conservative in a resource-poor environment and the most dynamic in a resource-rich environment. Clonal attributes also vary along soil and other environmental conditions. We hypothesized that in alpine communities in the Scandian Mts. (1) the average composition of traits in a plant assemblage in terms of i) the predominance of different clonal growth organ types, ii) the number of buds in the bud bank, iii) the distribution of the bud-bank (above- and below ground), iv) the distance of lateral spread and v) the longevity of plant – offspring connections would change along a gradient of soil properties and (2) that this variation would be in correspondence with that of traits associated with resource acquisition strategies (SLA, LDMC, leaf size and plant height). Analysis of clonal and bud bank traits for species of alpine communities supported our first hypothesis: with decreasing soil quality the most common clonal growth organs were rhizomes, and there was a predominance of perennial bud banks located at the soil surface or below-ground, low rates of lateral spread and long persistence of plant – offspring connections. Our second hypothesis was partly supported. As predicted, at the level of the plant assemblage, these clonal and bud bank traits were positively associated with LDMC, and negatively with leaf size and plant height. These observations reinforce the hypotheses about trade-offs between acquisition and retention strategies in plants. The only result that was in contradiction with our expectations was the lack of correspondence between clonal and bud bank traits and SLA that could be attributed to errors associated to the measurement of the area of narrow and small leaves or to the dependence of the SLA index on species-specific morphological attributes.  相似文献   

14.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

15.
Morphological and physiological characteristics of leaves from plant species collected in steppe communities in the various climatic zones in Eurasia were compared. The changes in leaf structure correlated with the major climatic factors. The mean thickness of leaves increased with increasing mean temperature of July and decreasing mean precipitation, which corresponded to aridity increase. The increased leaf thickness correlated with an increase in the specific leaf weight. The content of chlorophylls (a + b) in leaves greatly varied with plant habitats, whereas the chlorophyll a/b ratio remained unchanged. The chlorophyll content in leaf tissues had a general tendency to decrease with increasing leaf thickness. The leaf chlorophyll content positively correlated (R 2 = 0.77) with the proportion of chlorenchyma in leaf tissues. It is concluded that steppe plants adapt to climate aridization at the structural level by increasing the proportion of protective heterotrophic components of the leaf without changing the functional activity of photosynthetic tissues.  相似文献   

16.
We measured the influences of soil fertility and plant community composition on Glomeromycota, and tested the prediction of the functional equilibrium hypothesis that increased availability of soil resources will reduce the abundance of arbuscular mycorrhizal (AM) fungi. Communities of plants and AM fungi were measured in mixed roots and in Elymus nutans roots across an experimental fertilization gradient in an alpine meadow on the Tibetan Plateau. As predicted, fertilization reduced the abundance of Glomeromycota as well as the species richness of plants and AM fungi. The response of the glomeromycotan community was strongly linked to the plant community shift towards dominance by Elymus nutans. A reduction in the extraradical hyphae of AM fungi was associated with both the changes in soil factors and shifts in the plant community composition that were caused by fertilization. Our findings highlight the importance of soil fertility in regulating both plant and glomeromycotan communities, and emphasize that high fertilizer inputs can reduce the biodiversity of plants and AM fungi, and influence the sustainability of ecosystems.  相似文献   

17.
林窗是森林更新演替的重要环节, 揭示林窗环境下功能性状变异来源及其相对贡献, 有助于阐明植物对林窗环境的响应。该研究以中亚热带格氏栲(Castanopsis kawakamii)天然林为对象, 设置9个不同大小的林窗样地, 运用方差分解探讨林窗、物种和个体对叶性状变异的相对贡献, 采用线性回归分析不同大小林窗下群落性状变化及种间和种内性状变异的重要性。研究发现: (1)格氏栲天然林林窗植物比叶面积、叶干物质含量、叶厚和叶绿素含量由种间性状变异主导, 叶氮含量由种内性状变异主导, 叶磷含量受林窗大小影响最大。(2)群落叶磷含量与林窗大小具有显著正相关关系, 土壤温度和水解氮含量对群落叶磷含量具有显著正效应, 土壤有效磷含量具有显著负效应。(3)沿林冠开放度的群落叶磷含量变化主要由种内性状变异引起, 优势种扮演着重要角色。结果表明, 格氏栲天然林林窗环境下植物功能性状仍以种间性状变异为主(平均41%), 但沿林窗环境梯度的群落性状变化主要源自种内性状变异, 通过植物表型可塑性响应环境改变, 优势种作用明显。  相似文献   

18.
《植物生态学报》2014,38(7):655
Aims Corner’s rules reflect the architectural strategies of plants with respect to deployment of twig size and leaf size, as well as of the number of twigs and leaves. The objective of this study was to examine how Corner’s rules would vary among plants with different individual densities.
Methods The study site is located in the Tiantong National Forest Park (29.87° N, 121.65° E), Zhejiang Province. We measured twig cross-sectional area (twig size), total leaf area (leaf size per twig), and the number of twigs at a given twig size (branching intensity) in woody plants across 25 plots differing in stem density to examine the effects of individual competition on Corner’s rules. The standardized major axis (SMA) analysis was conducted to determine the quantitative relationships of twig size with leaf size and branching intensity.
Important findings Significant, positive allometric relationships between cross-sectional area and total leaf area were found in individual plants across all communities. There was no significant difference among communities of different density intervals in the slope of the linear regression between cross-sectional area and total leaf area of individual plants, and the common slope of the regressions was significantly greater than 1 (p < 0.001). The intercept was significantly greater for plants in communities with higher density than in those with lower density (p < 0.001), indicating that plants in a high density community support greater total leaf area than in a low density community for a given twig size. In contrast, a significant, negative allometric scaling relationship was found between branching intensity and cross-sectional area in individual plants across different communities. Also, nosignificant difference was found among plants in communities of different density intervals in the slope of the regression between branching intensity and cross-sectional area, and the common slope of the regressions was significantly less than –1 (p < 0.001). The intercept for the regression relationship between twig area and branching intensity was the same among plants in communities of different density intervals (p > 0.05), suggesting that plants in a high density community do not deploy more twigs per twig size than in a low density community. In summary, this study demonstrated that plants responded to changes in individual density by maintaining an invariant regression slope for the twig size-leaf size relationship and the twig size-branching intensity relationship, and that the Corner’s rules were not affected by individual density of the communities in the Tiantong region. However, changes in the intercept of the regression between twig size and leaf size indicate that deployment strategies between twig and leaf sizes could be adjusted with increasing individual plant competition, thus structuring species coexistence through niche differentiation.  相似文献   

19.
何淑嫱  李伟  程希平  谭芮  松卫红 《生态学报》2019,39(6):2063-2070
高寒草甸具有重要的生态服务功能,然而固有脆弱性使其极易遭受气候变化和人为干扰等多重因素的影响。作为滇西北旅游资源中重要的组分之一,高寒草甸吸引了大批游客前往开展徒步旅行活动,但伴随着的践踏干扰作用会不可避免地对高寒草甸生态系统带来负面影响。然而,目前关注践踏干扰对滇西北高寒草甸植被的影响,特别是植被功能性状和功能多样性如何发生变化方面的研究还十分欠缺。以云南省香格里拉市碧塔海自然保护区内的典型高寒草甸生态系统为研究对象,采用实验践踏的方式(一共5种不同强度的践踏处理)来模拟旅游活动对草甸植被的干扰作用,并以草甸植被的茎叶性状特征为切入点,重点探讨践踏干扰对茎叶性状的平均大小和变异程度的影响,以及物种丰富度(以物种形态分类为基础)和功能丰富度(以功能性状为基础)之间的关系。研究结果显示,随着践踏强度的增加,植株高度和叶片大小的平均值,而不是茎叶性状的变异程度,出现明显下降趋势。此外,物种丰富度和功能丰富度均随践踏强度的增强而减小,且两者之间呈现显著正相关关系。然而,较之轻度践踏实验组,重度践踏实验组中的功能均匀度和功能分离度水平均有所增加,表明践踏干扰可能会在短期内打破优势种对资源的绝对占有格局和减少物种间的生态位重叠程度。尽管高寒草甸对人类践踏活动有一定的承受能力,但气候变化和人为干扰等多重因素势必会改变和影响高寒草甸群落的结构和功能可持续性,这也对高寒草甸的保护与管理工作提出了更加紧迫的要求。  相似文献   

20.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号