首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
蜈蚣草砷超富集机制及其在砷污染修复中的应用   总被引:3,自引:0,他引:3  
蕨类植物蜈蚣草能够从土壤中吸收砷,并储存于地上部分羽叶的液泡中。蜈蚣草具有高效的抗氧化系统,以降低砷的毒害;其砷酸还原系统和液泡区隔化是蜈蚣草进行砷解毒和砷超富集的重要机制。本文综述了目前蜈蚣草砷超富集机制研究的主要进展,并对其在修复砷污染环境的应用中进行了讨论。  相似文献   

2.
戴锡玲  张蕾  王全喜 《生物学通报》2012,47(5):55-56,F0004
蜈蚣草(Pteris vittata L.)隶属于凤尾蕨科( Pteridaceae),是钙质土及石灰岩的指示植物,分布于我国热带和亚热带[1],是常见的蕨类植物.蜈蚣草是最先被发现的As超富集植物,它的叶片是主要的富集部位[2],所以,蜈蚣草可用来修复砷污染的土壤,由此使它受到人们的广泛关注.  相似文献   

3.
大叶井口边草——一种新发现的富集砷的植物   总被引:98,自引:4,他引:94  
自 1 999年以来对位于湖南省一些高砷区的植物和土壤进行了一系列的野外调查 ,以着力寻找砷的超富集植物。结果表明 ,与砷超富集植物蜈蚣草同属的另一种植物——大叶井口边草 ,对砷也具有显著的富集特征。这一发现为研究揭示砷在植物中的超富集机理提供了一种新的材料。建议深入开展蜈蚣草与大叶井口边草这两种砷富集植物的对比研究。  相似文献   

4.
大叶井边草——一种新发现的富集砷的植物   总被引:29,自引:4,他引:25  
自1999年以来对位于湖南省一些高砷区的植物和土壤进行了一系列的野外调查,以着力寻找砷的超富集植物。结果表明,与砷超富集植物蜈蚣草同属的另一种植物--大叶井口边草,对砷也具有显著的富集特征。这一发现为研究揭示砷在植物中的超富集机理提供了一种新的材料,建议深入开展蜈蚣草与大叶井口边草这两种砷富集植物的对比研究。  相似文献   

5.
蜈蚣草(Pteris vittata)是一种砷超富集植物, 能够通过根从土壤中吸收砷, 并将其输送至羽叶中富集。为了探索蜈蚣草单个细胞在砷积累和砷抗性中的特性, 本文首次通过酶解方法获得了这一砷超富集蕨类植物的原生质体, 并研究了原生质体在不同浓度砷胁迫下的生活力。结果显示, 蜈蚣草原生质体的抗砷性远高于烟草原生质体的抗砷性, 与其整体植株的抗性一致。这为探索砷抗性和超富集机理提供了一个新的研究体系。  相似文献   

6.
砷超富集植物蜈蚣草原生质体的分离及其抗砷性分析   总被引:1,自引:0,他引:1  
詹宝  徐文忠  麻密 《植物学通报》2006,23(4):363-367
蜈蚣草(Pteris vittata)是一种砷超富集植物,能够通过根从土壤中吸收砷,并将其输送至羽叶中富集.为了探索蜈蚣草单个细胞在砷积累和砷抗性中的特性,本文首次通过酶解方法获得了这一砷超富集蕨类植物的原生质体,并研究了原生质体在不同浓度砷胁迫下的生活力.结果显示,蜈蚣草原生质体的抗砷性远高于烟草原生质体的抗砷性,与其整体植株的抗性一致.这为探索砷抗性和超富集机理提供了一个新的研究体系.  相似文献   

7.
高砷区植物的生态与化学特征   总被引:51,自引:1,他引:50       下载免费PDF全文
 土壤砷污染是一种十分严重的环境问题,但目前尚无经济有效的治理方法。利用各种重金属的耐性与富集植物修复重金属污染土壤是当前的研究热点。通过对两个中国典型的砷矿区(炼砷区)土壤与植物的系统调查与采样分析,发现若干种植物对砷具有极强的耐性和不同程度的富集能力。砷在不同植物中的含量分别为:蜈蚣草(Pteris vittata)羽片1 600 mg·kg-1 DW,剑叶凤尾蕨(Pteris ensiformis)地上部1 230 mg·kg-1 DW,酸模(Rumex acetosa)地上部 440 mg·kg-1  相似文献   

8.
砷对土壤-蜈蚣草系统中磷生物有效性的影响   总被引:2,自引:1,他引:1  
磷是植物必需的大量营养元素,而其同族元素砷却不是植物生长发育所必需的。通过等温吸附平衡实验发现土壤中存在的砷可以降低褐土对磷的吸附,褐土对砷的吸附率大于等于褐土对磷的吸附率。对砷超富集植物蜈蚣草而言,土壤中砷的添加量不超过800mg/kg时,蜈蚣草地上部和地下部磷含量显著提高,结果初步表明,砷可以提高土壤中磷的生物有效性。  相似文献   

9.
不同生态型摩西球囊霉菌株对蜈蚣草砷吸收的影响   总被引:1,自引:0,他引:1  
砷超富集植物——蜈蚣草无论是在野外或是在室内均能被丛枝菌根真菌(AM真菌)侵染,但其对蜈蚣草砷吸收及转运的机理尚不清晰.本研究将分离于湖南省郴州市金川塘某铅锌尾矿蜈蚣草根际土壤(Glomus mosseae BGC GD01,简称污染菌株)和云南省未污染土壤(G.mosseae BGC YN05,简称非污染菌株)的2种摩西球囊霉菌株分别接种于非污染生态型和污染生态型蜈蚣草根际,8周后利用菌根化蜈蚣草幼苗在浓度为100 μmol·L-1砷(Na2HAsO4·7H2O)营养液中进行为期24 h的水培试验.结果表明,2种生态型摩西球囊霉菌株分别与蜈蚣草形成中等程度侵染,侵染率为25.2% ~31.3%.无论是接种污染菌株或是非污染菌株,均明显促进了蜈蚣草根部对磷的吸收.在24 h水培试验期间,接种非污染菌株显著促进了蜈蚣草根部砷的吸收,但接种污染菌株对蜈蚣草根部砷吸收的促进作用有限,说明AM真菌对蜈蚣草砷吸收存在种内差异.  相似文献   

10.
改良FIASCO方法筛选砷超富集植物蜈蚣草SSR分子标记   总被引:1,自引:0,他引:1  
蜈蚣草(Pteris vittata L.)是目前用于砷污染土壤修复最好的超富集植物,但其分子水平上的研究数据较少。为了开发蜈蚣草特异性SSR遗传标记,本文采用改良的FIASCO方法从蜈蚣草AG和AC微卫星富集文库中随机挑选100个克隆,分离得到51个微卫星位点,其中60%为完美型(Perfect)SSR。根据这些位点设计、合成了25对引物,并对江西庐山及湖北恩施两地蜈蚣草种群各20个个体进行了遗传多样性检测,结果发现:其中8个完美型及1个间断型(intermittent)SSR位点的引物能够扩增出清晰、稳定且具有多态性的条带。9对引物共扩增出41个等位基因,各位点等位基因数在2~7之间,平均等位基因数为4.56个;期望杂合度在0.0494~0.8169之间;没有连锁不平衡现象发生。采用大叶井栏边草(Pteris multifida Poir.)进行跨种扩增,结果发现其中6对引物能够进行种间扩增。这些SSR分子标记的开发有助于蜈蚣草生态适应性进化分析、揭示蜈蚣草地理分布格局以及探讨蜈蚣草遗传多样性,还可用于品种鉴定及选育等。  相似文献   

11.
刈割对蜈蚣草的砷吸收和植物修复效率的影响   总被引:20,自引:1,他引:19  
以野生苗移栽的蜈蚣草为试材 ,通过盆栽试验研究了收获次数对蜈蚣草生长、砷吸收和植物修复效率的影响。结果表明 :在 3次收获中 ,随着收获次数的增加 ,不同砷浓度处理之间蜈蚣草生物量的差异逐步缩小 ;不加砷的对照处理中 ,每次收获后的砷吸收速率下降趋势 ,而在 3个加砷处理中 ,第 2次收获和第 3次收获的蜈蚣草的吸砷速率为 6 3~ 75 μg/ (plant· d)、4 4~ 5 5μg/ (plant· d) ,均显著高于第 1次收获时的吸收速率。表明多次收获并没有降低砷的积累速度。由此可见 ,通过适当增加蜈蚣草的收获次数是提高砷修复效率的一种策略  相似文献   

12.
The sporophyte of the fern Pteris vittata is known to hyperaccumulate arsenic (As) in its fronds to >1% of its dry weight. Hyperaccumulation of As by plants has been identified as a valuable trait for the development of a practical phytoremediation processes for removal of this potentially toxic trace element from the environment. However, because the sporophyte of P. vittata is a slow growing perennial plant, with a large genome and no developed genetics tools, it is not ideal for investigations into the basic mechanisms underlying As hyperaccumulation in plants. However, like other homosporous ferns, P. vittata produces and releases abundant haploid spores from the parent sporophyte plant which upon germination develop as free-living, autotrophic haploid gametophyte consisting of a small (<1 mm) single-layered sheet of cells. Its small size, rapid growth rate, ease of culture, and haploid genome make the gametophyte a potentially ideal system for the application of both forward and reverse genetics for the study of As hyperaccumulation. Here we report that gametophytes of P. vittata hyperaccumulate As in a similar manner to that previously observed in the sporophyte. Gametophytes are able to grow normally in medium containing 20 mm arsenate and accumulate >2.5% of their dry weight as As. This contrasts with gametophytes of the related nonaccumulating fern Ceratopteris richardii, which die at even low (0.1 mm) As concentrations. Interestingly, gametophytes of the related As accumulator Pityrogramma calomelanos appear to tolerate and accumulate As to intermediate levels compared to P. vittata and C. richardii. Analysis of gametophyte populations from 40 different P. vittata sporophyte plants collected at different sites in Florida also revealed the existence of natural variability in As tolerance but not accumulation. Such observations should open the door to the application of new and powerful genetic tools for the dissection of the molecular mechanisms involved in As hyperaccumulation in P. vittata using gametophytes as an easily manipulated model system.  相似文献   

13.
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO? and AlAsO? minerals (from < 5 μg L?1 to 5.04-7.37 mg L?1 As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg?1 As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata.  相似文献   

14.
砷在植物体内的吸收和代谢机制研究进展   总被引:1,自引:0,他引:1  
汪京超  李楠楠 《植物学报》2015,50(4):516-526
砷污染在全世界尤其是东南亚地区已成为一个严峻的环境问题,严重威胁着农业生产、生态环境及人体健康。植物是砷流入人体最主要的途径之一。揭示植物对砷吸收、转运和储存及阐明植物调控砷超积累和迁移的分子机制,对开发植物修复技术并有效控制砷向食物链迁移意义重大。该文综述了目前植物砷吸收与代谢机制的研究进展,并对植物体内参与砷运输过程的转运蛋白进行了重点阐述。  相似文献   

15.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from the environment. This work aims to examine (i) arsenic accumulation in three fern species [Chinese brake fern (Pteris vittata L.), slender brake fern (Pteris ensiformis Burm. f.), and Boston fern (Nephrolepis exaltata L.)], which were exposed to 0, 150, or 300 muM of arsenic (Na(2)HAsO(4).7H(2)O), and (ii) the role of anti-oxidative metabolism in arsenic tolerance in these fern species. Arsenic accumulation increased with an increase in arsenic concentration in the growth medium, the most being found in P. vittata fronds showing no toxicity symptoms. In addition, accumulation was highest in the fronds, followed by the rhizome, and finally the roots, in all three fern species. Thiobarbituric acid-reacting substances, indicators of stress in plants, were found to be lowest in P. vittata, which corresponds with its observed tolerance to arsenic. All three ferns responded differentially to arsenic exposure in terms of anti-oxidative defence. Higher levels of superoxide dismutase, catalase, and ascorbate peroxidase were observed in P. vittata than in P. ensiformis and N. exaltata, showing their active involvement in the arsenic detoxification mechanism. However, no significant increase was observed in either guaiacol peroxides or glutathione reductase in arsenic-treated P. vittata. Higher activity of anti-oxidative enzymes and lower thiobarbituric acid-reacting substances in arsenic-treated P. vittata correspond with its arsenic hyper-accumulation and no symptoms of toxicity.  相似文献   

16.
Pteris vittata L. is a staggeringly efficient arsenic hyperaccumulator that has been shown to be capable of accumulating up to 23,000 microg arsenic g(-1), and thus represents a species that may fully exploit the adaptive potential of plants to toxic metals. However, the molecular mechanisms of adaptation to toxic metal tolerance and hyperaccumulation remain unknown, and P. vittata genes related to metal detoxification have not yet been identified. Here, we report the isolation of a full-length cDNA sequence encoding a phytochelatin synthase (PCS) from P. vittata. The cDNA, designated PvPCS1, predicts a protein of 512 amino acids with a molecular weight of 56.9 kDa. Homology analysis of the PvPCS1 nucleotide sequence revealed that it has low identity with most known plant PCS genes except AyPCS1, and the homology is largely confined to two highly conserved regions near the 5'-end, where the similarity is as high as 85-95%. The amino acid sequence of PvPCS1 contains two Cys-Cys motifs and 12 single Cys, only 4 of which (Cys-56, Cys-90/91, and Cys-109) in the N-terminal half of the protein are conserved in other known PCS polypeptides. When expressed in Saccharomyces cerevisae, PvPCS1 mediated increased Cd tolerance. Cloning of the PCS gene from an arsenic hyperaccumulator may provide information that will help further our understanding of the genetic basis underlying toxic metal tolerance and hyperaccumulation.  相似文献   

17.
Two hydroponic experiments were conducted to evaluate factors affecting plant arsenic (As) hyperaccumulation. In the first experiment; two As hyperaccumulators (Pteris vittata and P. cretica mayii) were exposed to 1 and 10 mg L(-1) arsenite (AsIII) and monomethyl arsenic acid (MMA) for 4 wk. Total As concentrations in plants (fronds and roots) and solution were determined In the second experiment P. vittata and Nephrolepis exaltata (a non-As hyperaccumulator) were exposed to 5 mgL(-1) arsenate (AsV) and 20 mgL(-1) AsIIIfor 1 and 15 d. Total As and AsIII concentrations in plants were determined Compared to P. cretica mayii, P. vittata was more efficient in arsenic accumulation (1075-1666 vs. 249-627mg kg(-1) As in the fronds) partially because it is more efficient in As translocation. As translocation factor (As concentration ratio in fronds to roots) was 3.0-5.6 for P. vittata compared to 0.1 to 4.8 for P. cretica. Compared to N. exaltata, P. vittata was significantly more efficient in arsenic accumulation (38-542 vs. 4.8-71 mg kg(-1) As in thefronds) as well asAs translocation (1.3-5.6 vs. 0.2-0.5). In addition, P. vittata was much more efficient in As reduction from AsV to AsIII (83-84 vs. 13-24% AsIII in the fronds). Little As reduction occurred after 1-d exposure to AsV in both species indicates that As reduction was not instantaneous even in an As hyperaccumulator. Our data were consistent with the hypothesis that both As translocation and As reduction are important for plant As hyperaccumulation.  相似文献   

18.
Phytoremediation: novel approaches to cleaning up polluted soils   总被引:43,自引:0,他引:43  
Environmental pollution with metals and xenobiotics is a global problem, and the development of phytoremediation technologies for the plant-based clean-up of contaminated soils is therefore of significant interest. Phytoremediation technologies are currently available for only a small subset of pollution problems, such as arsenic. Arsenic removal employs naturally selected hyperaccumulator ferns, which accumulate very high concentrations of arsenic specifically in above-ground tissues. Elegant two-gene transgenic approaches have been designed for the development of mercury or arsenic phytoremediation technologies. In a plant that naturally hyperaccumulates zinc in leaves, approximately ten key metal homeostasis genes are expressed at very high levels. This outlines the extent of change in gene activities needed in the engineering of transgenic plants for soil clean-up. Further analysis and discovery of genes for phytoremediation will benefit from the recent development of segregating populations for a genetic analysis of naturally selected metal hyperaccumulation in plants, and from comprehensive ionomics data--multi-element concentration profiles from a large number of Arabidopsis mutants.  相似文献   

19.
Pteris vittata can tolerate very high soil arsenic concentration and rapidly accumulates the metalloid in its fronds. However, its tolerance to arsenic has not been completely explored. Arbuscular mycorrhizal (AM) fungi colonize the root of most terrestrial plants, including ferns. Mycorrhizae are known to affect plant responses in many ways: improving plant nutrition, promoting plant tolerance or resistance to pathogens, drought, salinity and heavy metal stresses. It has been observed that plants growing on arsenic polluted soils are usually mycorrhizal and that AM fungi enhance arsenic tolerance in a number of plant species. The aim of the present work was to study the effects of the AM fungus Glomus mosseae on P. vittata plants treated with arsenic using a proteomic approach. Image analysis showed that 37 spots were differently affected (21 identified). Arsenic treatment affected the expression of 14 spots (12 up-regulated and 2 down-regulated), while in presence of G. mosseae modulated 3 spots (1 up-regulated and 2 down-regulated). G. mosseae, in absence of arsenic, modulated 17 spots (13 up-regulated and 4 down-regulated). Arsenic stress was observed even in an arsenic tolerant plant as P. vittata and a protective effect of AM symbiosis toward arsenic stress was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号