首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 142 毫秒
1.
辣椒31个优良自交系的亲本类群分析   总被引:2,自引:0,他引:2  
任羽  张银东  尹俊梅  王得元 《遗传》2008,30(2):237-237―245
以包含我国重要尖椒品种的亲本材料在内的31份优良自交系为材料, 利用SRAP标记和基因型值分析技术开展了辣椒自交系间遗传差异的分析与类群划分研究。结果表明: 在30个引物组合中, 27个引物组合可以 在自交系间扩增出多态性条带, 共扩增出310个多态性条带, 平均每个引物组合产生11.5个多态性条带, 显示出SRAP技术具有较强的分析效率; 基于SRAP标记和Yule相似系数对这些自交系进行的聚类分析中, 可以基本区分辣椒的2个变种(C. annuum var. grossum和C. annuum var. longum), 而且可以反映出自交系间的亲缘及系谱关系; 在相似系数为0.67处, 可将这31个自交系分为4个类群; 基于基因型值和标准Euclidean距离对这些自交系进行的聚类分析可成功地将辣椒的两个变种完全区分; 在遗传距离约4.5处, 可将这31个自交系分为4个类群; 自交系间基于SRAP标记与基因型值的遗传距离存在一定的相关性。  相似文献   

2.
中国灌木辣椒种质遗传多样性的SRAP和SSR分析   总被引:3,自引:0,他引:3       下载免费PDF全文
应用SRAP和SSR分子标记对8份辣椒种质进行了遗传多样性分析,结果表明,15对SRAP引物组合共扩增出321条带,平均每对引物扩增出21.40条,多态性位点比率为72.90%;18对SSR引物共扩增出109条带,平均每对引物扩增出6.06条,多态性位点比率为98.17%。与SRAP比较,SSR检测到的Shannon多样性指数(I)、观测等位基因数(Na)和有效等位基因数(Ne)等遗传多样性参数都较大,说明SSR有更高的多态性检测效率。基于SRAP的聚类与基于SSR的聚类之间存在极显著正相关,且都能将中国灌木辣椒种质与美洲灌木辣椒种质及一年生辣椒种质有效区分。  相似文献   

3.
豌豆种质表型性状SSR标记关联分析   总被引:2,自引:0,他引:2  
关联分析是以连锁不平衡原理为基础,鉴定某一群体内表型性状与遗传标记或候选基因间关系的遗传分析方法。本研究利用59个多态性SSR标记,对192份豌豆种质进行全基因组扫描,以分析SSR位点遗传多样性,寻找其连锁不平衡位点;采用TASSEL软件的一般线性模型,利用59个SSR标记对19个形态性状进行关联分析。结果显示SSR位点间有较高的多态性和一定程度的连锁不平衡,共检测出32个SSR标记位点与14个表形性状相关联,一些SSR标记与2个或多个形态性状相关联。  相似文献   

4.
为了拓宽黄淮海区玉米自交系的遗传基础,加快欧美优异种质的融入与利用,本研究利用SSR分子标记对120份来自美国和塞尔维亚及2份中国的玉米自交系进行遗传多样性和聚类分析。结果表明:29个多态性SSR标记共检测到115个等位位点,平均3.97个,位点多态性信息指数(PIC)平均为0.50,较好地揭示了自交系间的遗传多样性;观测杂合度(Ho)仅为0.03,表明参试自交系遗传稳定、纯合度高;美国SS、美国NSS、塞尔维亚和中国骨干自交系4个群之间相比,美国NSS群的等位位点数(3.55)、Shannon信息指数(0.93)最高,而塞尔维亚群的有效等位位点数(2.37)最高,表明美国NSS和塞尔维亚自交系群比其他两个群遗传多样性高;4个自交系群间的遗传距离介于0.1403~0.4695之间,美国NSS群与美国SS群、塞尔维亚群之间较小(0.1419,0.1403),与中国骨干自交系群之间最大(0.4695),4个群的遗传一致度介于0.6253~0.8691之间,美国NSS群与美国SS、塞尔维亚两个群之间的遗传一致度较高,表明美国与塞尔维亚自交系之间基因交流频繁,亲缘关系较近;聚类分析将122份玉米自交系分为9大主要类群,美国SS种质、NSS种质自交系被明显的区分开,并且SS种质被分为2个主要类群(Ⅰ和Ⅸ),NSS种质被分为6个主要类群(Ⅱ-Ⅶ),来自塞尔维亚的材料分散在美国NSS种质类群。本研究结果为来自欧美的自交系在玉米育种中合理利用提供可靠依据。  相似文献   

5.
从251个SSR标记中筛选出均匀分布在玉米基因组上的88个SSR标记,用以分析评价贵州省2000年以来47个审定品种的70份亲本材料的遗传多样性。SSR标记检测的结果:88个标记共检测出466个等位基因,每个标记可检测等位基因2~18个,平均为5.31个;每个标记位点的多态性信息量(PIC)变化为0.213~0.965,平均为0.586,这表明贵州玉米自交系具有较为丰富的遗传多样性。POPTREE聚类分析结果:70份自交系分为Ⅰ、Ⅱ和Ⅲ类群。Ⅰ类群含8个自交系,以瑞德和兰卡斯特等温带种质为主。Ⅱ类群有11个自交系,以PN78599、瑞德和兰卡斯特等温带种质为主。Ⅲ类群拥有51个自交系,可分为A和B 2个亚群,B亚群还可再分为B1和B2 2个次亚群,A亚群中的10个系以我国地方温带种质为主,B1次亚群中的19个系以贵州地方亚热带种质为主,B2次亚群中的22个系以泰国苏湾热带种质为主。杂种优势利用分析的结果表明,贵州近些年在玉米育种中,主要是利用贵州地方亚热带种质和泰国苏湾热带种质2个杂种优势群,这与其多态位点百分率较高有关,与其群内SSR位点的平均等位数较多有关。贵州玉米育种利用的种质类型较少,有必要加强玉米种...  相似文献   

6.
SSR与SRAP标记在玉米品种鉴定中的比较研究   总被引:4,自引:0,他引:4  
利用SSR标记和SRAP标记对19个玉米品种及8份莱农15样品进行了分析,比较了2种标记的分辨能力及在亲缘关系和杂交种纯度鉴定中的表现.与SSR标记相比,SRAP标记用于玉米品种鉴定扩增住点数量更多,PIC值更高,具有更高的分辨率;在亲缘关系分析方面,SSR检测的遗传距离变幅更大,2种标记计算的遗传距离呈极显著正相关,分类结果基本一致;在杂交种纯度检测中,SRAP标记的期望位点在杂交种群体中检测率高于SSR标记相应位点,检测杂交种纯度结果更接近田问种植鉴定,因而准确度更高.SRAP在玉米品种鉴定中具有一定的优势,可作为SSR标记技术的有益补充,特别是在杂交种纯度鉴定中应用.  相似文献   

7.
通过估算湿加松亲本间SNP位点遗传距离,以有效预测杂交后代的树高、胸径、材积杂种优势,为分子辅助交配设计育种提供参考。利用SLAF-seq技术对131个湿加松亲本种质资源进行测序,获得有效的SNP标记;基于SNP位点信息,利用MEGA5.0软件估算13个湿加松亲本间遗传距离,并进行聚类分析,同时利用SPSS软件分析13个杂交组合生长性状杂种优势与SNP遗传距离的相关性。SLAF-seq共获得53 952个多态性SLAF标签,96 736个有效SNP标记;湿加松亲本间遗传距离介于0.425 1~0.490 6,亲本间SNP遗传距离与树高、胸径、材积生长性状杂种优势相关系数分别为0.680、0.648、0.624,均达到显著正相关水平。SLAF-seq技术可提供海量SNP位点,根据海量SNP位点信息可估算湿加松亲本间遗传距离,以有效预测树高、胸径、材积杂种优势。  相似文献   

8.
为了系统性地开发和拓展柑桔SSR标记,通过对公布的柑桔BAC文库末端序列(BAC-End sequence,BES)进行SSR分析,选择1500个SSR位点设计合成并检测323对引物。结果表明:(1)从总长度为28.1 Mb的46 339条序列中共检测出22 403个SSR位点,约每2条序列就会出现一个SSR位点,发生频率为48%,相当于平均1.25kb的序列中就会出现1个SSR,频率约为柑桔EST的2倍,且不同核心重复序列的SSR发生特点与EST也不同。(2)所合成的323对引物中,有效扩增316对,扩增率约98%,173对表现多态性,总多态性比率约55%,多态性引物中单核苷酸重复类型15对,双核苷酸重复类型100对,三核苷酸及以上重复类型58对,表明柑桔BES中具有较为丰富的多态性SSR标记。(3)结合已发表的遗传作图数据,对总计349个多态性位点进行遗传连锁分析,获得的新遗传连锁图谱共含有9个连锁群、334个SSR标记、总长844.2cM、平均图距2.53cM,延长和加密了先前的图谱。该研究开发的新SSR标记为开展柑桔遗传鉴定分析和遗传图谱构建提供了新的标记来源,加密的遗传图谱为柑桔的基因定位、图位克隆和标记辅助育种等奠定了基础,SSR分析结果也为其他物种SSR标记的开发提供了参考。  相似文献   

9.
青藏高原早熟甘蓝型春油菜遗传资源研究   总被引:1,自引:0,他引:1  
利用SSR和SRAP 2种分子标记研究了69份试验材料的遗传差异及其亲缘关系.29对SSR标记共扩增出118条多态性带,多态性位点占总扩增位点的97.5%,27对SRAP引物扩增出123条多态性带,多态性比率为70.3%.两种标记聚类结果表明.在相似系数0.566处所有材料可以分为A、B 2个大类群;B类在相似系数0.620处又可分为7个亚类,10个天然双低早熟甘蓝型品系、2个甘蓝型亲本和4个新型品系聚在第1亚类中,其余的51个新型甘蓝型油菜品系分别聚在其他6个亚类中.对55份新型品系进行遗传成分分析,结果表明,每个品系都合有4种带型,各品系所舍不同带所占比率不同.对各品系中含有白菜型亲本带所占比率分别与其对应的两亲本之间的遗传距离进行相关分析,结果表明新型甘蓝型油菜品系中白菜型亲本带所占比率与白菜型素本间的遗传距离为负相关(-0.52),且达到极显著水平;与甘蓝型亲本间的遗传距离为正相关(0.31),且达到显著水平.对试验材料之间的遗传距离及其来源进行分析(除与2个白菜型亲本间),遗传距离排名前20位的都来自新型品系之间或天然品系与新型之间,最大为0.544.  相似文献   

10.
RSAP、SSR和SRAP分析马铃薯遗传多样性的应用比较   总被引:1,自引:0,他引:1  
本研究分别利用RSAP、SSR和SRAP对15份马铃薯种质进行遗传多样性分析,比较3种分子标记的分析效力。结果表明,平均每对引物扩增出的多态性位点RSAP(5.75个)SSR(6.33个)SRAP(7.75个);RSAP+SSR+SRAP联合聚类的结果与SRAP和RSAP聚类结果基本一致,相关性分别达到极显著和显著水平,与SSR的聚类结果基本相似,呈显著相关性。在分析马铃薯遗传多样性中,SRAP标记的效果最优,SSR标记效果略优于RSAP标记。RSAP分子标记能较好地分析马铃薯的遗传多样性,而以RSAP+SSR+SRAP联合分析,则能更好地评估种质的遗传多样性和亲缘关系。  相似文献   

11.
Knowledge of genetic diversity (GD) and relationships among maize inbred lines is indispensable in a breeding program. Our objectives were to (1) investigate the level of genetic diversity among maize inbred lines and (2) assess their genetic structures by applying simple sequence repeat (SSR) markers. Fifty-six highland and mid-altitude maize inbred lines obtained from CIMMYT programs in Ethiopia and Zimbabwe were genotyped using 27 SSR loci. All of the genotypes studied could unequivocally be distinguished with the combination of the SSRs used. In total, 104 SSR alleles were identified, with a mean of 3.85 alleles per locus. The average polymorphism information content (PIC) was 0.58. GD expressed as Euclidean distance, varied from 0.28 to 0.73 with an average of 0.59. Cluster analysis using unweighted pair group method with arithmetic average (UPGMA) suggested five groups among the inbred lines. Most of the inbred lines adapted to the highlands and the mid-altitudes were positioned in different clusters with a few discrepancies. The pattern of groupings of the inbred lines was mostly consistent with available pedigree information. The variability detected using SSR markers could potentially contribute towards effective utilization of the inbred lines for the exploitation of heterosis and formation of genetically diverse source populations in Ethiopian maize improvement programs.  相似文献   

12.
Information regarding the genetic diversity and genetic relationships among elite inbred lines is necessary to improve new cultivars in maize breeding programs. In this study, genetic diversity and genetic relationships were investigated among 84 waxy maize inbred lines using 50 SSR markers. A total of 269 alleles were identified at all the loci with an average of 5.38 and a range between 2 and 13 alleles per locus. The gene diversity values varied from 0.383 to 0.923 with an average of 0.641. The cluster tree generated using the described SSR markers recognized two major groups at 32% genetic similarity. Group I included 33 inbred lines while group II included 51 inbred lines. The clustering patterns of most of the waxy maize inbred lines did not clearly agree with their source, pedigree or geographic location. The average GS among all inbred lines was 35.7 ± 10.8. Analysis of waxy maize inbred lines collected from Korea and China at 50 SSR loci revealed higher values of average number of alleles (4.9) and gene diversity (0.638) in Korean inbred lines as compared to Chinese inbred lines (3.5 and 0.563, respectively). The information obtained from the present studies would be very useful for maize breeding programs in Korea.  相似文献   

13.
Xu SX  Liu J  Liu GS 《Hereditas》2004,141(3):207-215
A challenge to maize breeders is to predict and identify inbred lines that can produce highly heterotic hybrids precisely. In the present study we surveyed the genetic diversity among 15 elite inbred lines of maize in China with SSR markers and assessed the relationship between SSR marker and hybrid yield/yield heterosis in a diallel set of 105 crosses. Forty-three SSR primers selected from all sixty-three primers gave stable profiles amplified in the sample of 15 inbred lines, which could clearly resolve on 4% metaphor agarose gel. The average number of alleles per SSR locus was 4.44 with a range from 2 to 9. The polymorphism information content (PIC) for the SSR loci varied from 0.28 to 0.81 with a mean of 0.6281. Genetic similarity (GS) among 15 lines was estimated with 191 alleles identified as raw data, the Nei's coefficient of GS ranged from 0.492 for 478 vs HZ4 up to 0.745 for E28 to ZH64 with a mean of 0.619. The cluster diagram based upon the SSR data grouped the 15 lines into families consistent with the yield heterotic response of these. Genetic distance (GD) based on SSR data was significantly correlated with hybrid yield/yield heterosis, the correlation coefficient (r) being 0.5432 and 0.4271 in 1999 and 0.4305 and 0.3614 in 1998 field test, respectively, whereas the determination coefficient (r2) was lower. The correlation between GD based on SSR data and hybrid yield/yield heterosis changed alone with the difference of number and pedigree relationship among parents that were used in this study. SSR makers showed high polymorphism and could be used to assess the relationship between inbred lines of maize, but it was difficult to predict the yield heterosis of maize.  相似文献   

14.
The most important concerns of hybrid rice breeders are selection of donors to improve parental lines and prediction of hybrid performance. In this study, SSR molecular marker technology and a half-diallel method were used to address these related hybrid production issues. The results show that genetic diversity among the parental lines is certainly related to heterosis. The heterozygosity of each parental pair is significantly associated with the general combining ability, not with the specific combining ability. However, neither genetic diversity nor heterozygosity is a good indicator for predicting heterosis. From these results, it is suggested that donors for improving parents of hybrids be selected from the improved inbred lines by conventional breeding programs. In this investigation, we also discovered that four favorable alleles and six favorable heterogenic patterns on the parental lines significantly contribute to the heterosis of their hybrids in grain yield, whereas six unfavorable alleles and six unfavorable heterogenic patterns significantly reduce heterosis. These noticeable findings could be, in practice, useful for hybrid rice breeding programs with SSR marker-assisted selection. It is suggested that the optimal combinations with the superior grain yield could be bred out by assembling those favorable alleles into their parental lines and by removing the unfavorable alleles from the parental lines. This study also indicates that there is still a great heterosis potential to be exploited in indica/indica hybrids by the same strategy. In indica/japonica hybrid breeding programs, it may also be important to remove unfavorable alleles rather than broaden genetic diversity or heterozygosity of the parents.  相似文献   

15.
Identification of the diverse sources of resistance is an important issue among the breeders for developing pest and disease free hybrids, to reduce the inoculum load, to prolong the life of inbred lines/hybrids and to reduce the cost of cultivation. Molecular diversity analysis was carried out among 23 maize inbred lines with respect to post flowering stalk rot and pink borer. Forty six SSR markers were employed among eight post flowering stalk rot (PFSR) and seven pink borer resistant lines along with eight other inbred lines to identify diverse resistant sources for developing resistant heterotic combinations to above pests and diseases. Number of alleles per SSR marker ranged from 2 to 9 averaging 4.11. The polymorphism information content (PIC) ranged from 0.272 to 0.839 with an average of 0.568. Discrimination rate (DR) of the markers ranged from 0.095 to 0.861 with a mean of 0.618. Number of alleles was highly correlated with PIC and DR. The pair-wise genetic dissimilarity values ranged from 0.05 to 0.84 with an overall mean of 0.64. Un-weighted neighbour joining clustering put 23 genotypes in two main clusters, which were further subdivided into 5 and 6 sub-clusters, respectively. We obtained 56 rare and 26 unique alleles in specific inbred lines, which can be used for identification of these lines. The present study has revealed considerable diversity among inbred lines differing for resistance against PFSR and pink borer; and provided ample scope for selection of parents for utilization in heterosis breeding  相似文献   

16.
The classification of maize inbred lines into heterotic groups is an important undertaking in hybrid breeding. The objectives of our research were to: (1) separate selected tropical mid-altitude maize inbred lines into heterotic groups based on grain yield data; (2) assess the genetic relationships among these inbred lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers; (3) examine the consistency between yield-based and marker-based groupings of the inbred lines. Thirty-eight tropical mid-altitude maize inbred lines were crossed to two inbred line testers representing the flint and dent heterotic pattern, respectively. The resulting testcrosses were evaluated in a trial at three locations for 2 years. Significant general combining ability (GCA) and specific combining ability (SCA) effects for grain yield were detected among the inbred lines. The tester inbred lines classified 23 of the 38 tested inbred lines into two heterotic groups based on SCA effects and testcross mean grain yields. This grouping was not related to endosperm type of the inbred lines. The outstanding performance of testcrosses of the remaining 15 inbred lines indicates the presence of significant genetic diversity that may allow the assignment of the lines into more than two heterotic groups. Diversity analysis of the 40 maize inbred lines using AFLP and SSR markers found high levels of genetic diversity among these lines and subdivided them into two main groups with subdivision into sub-groups consistent with breeding history, origin and parentage of the lines. However, heterotic groups formed using yield-based combining ability were different from the groups established on the basis of molecular markers. Considering the diversity of the genetic backgrounds of the mid-altitude inbred lines, the marker-based grouping may serve as the basis to design and carry out combining ability studies in the field to establish clearly defined heterotic groups with a greater genetic similarity within groups.Communicated by H.H. Geiger  相似文献   

17.
There is an important role of understanding the genetic diversity among and within inbred lines at the molecular level for maize improvement in different breeding programs. The present study was devoted to estimate the level of genetic diversity among the inbred lines of maize using the simple sequence repeat analysis (SSR). The application of six different SSR markers successfully provided the information on similarity or diversity as well as the heterozygosity of the allelic loci for all the eight inbred line of maize.  相似文献   

18.
We examined the genetic diversity of 80 inbred waxy maize lines using 22 SSR molecular markers that could be used to achieve heterosis in waxy maize. Eighty inbred waxy maize lines with different phenotypes, 40 yellow, 25 white, 13 black, and two red lines were analyzed by SSR molecular marker fingerprint and cluster analysis. Using a standard genetic distance of 0.55, the 80 waxy maize inbred lines were clustered into nine groups. Among them, group II, group V, groups VII and VIII, and group IX were divided into three subgroups at a genetic distance of 0.46, into two subgroups at 0.49, into two subgroups at 0.46, and into four subgroups at 0.493, respectively. All but one of the yellow waxy maize inbred lines were clustered in groups VI, VII, VIII, and IX. Group IX (30 lines) contained 28 yellow lines; the other 11 yellow lines were distributed among groups VI, VII and VIII. Among the 25 white lines, 21 were clustered in groups III, V, VI and the third subgroup of group II. The black line N72 was in a group of its own. The black lines N75, N76 and N78 were distributed in groups VII, VIII and IX, respectively. The other nine black lines were clustered in group II. The red lines were distributed in the second subgroup of group II and there was no difference in genetic distance between them. In conclusion, there were considerable genetic differences among waxy maize inbred lines of different colors. The mean genetic distance of inbred lines of the same color was significantly less than that of lines of different colors. Therefore, we concluded that it was more accurate to determine the difference between the populations using the highly stable DNA genetic markers.  相似文献   

19.
Heterosis for horticultural traits in Broccoli   总被引:4,自引:0,他引:4  
Over the last three decades, broccoli (Brassica oleracea L., Italica Group) hybrids made by crossing two inbred lines replaced open-pollinated populations to become the predominant type of cultivar. The change to hybrids evolved with little or no understanding of heterosis or hybrid vigor in this crop. Therefore, the purpose of the present study was to determine levels of heterosis expressed by a set of hybrids derived by crossing relatively elite, modern inbreds (n = 9). An additional objective was to determine if PCR-based marker derived genetic similarities among the parents can be useful to predict heterosis in this crop. Thirty-six hybrids derived from a diallel mating design involving nine parents were evaluated for five horticultural characters including the head characteristics of head weight, head stem diameter, and maturity (e.g., days from transplant to harvest), and the plant vigor characteristics of plant height, and plant width in four environments. A total of 409 polymorphic markers were generated by 24 AFLP, 23 SRAP and 17 SSR primer combinations. Euclidean distances between parents were determined based on phenotypic traits. About half of the hybrids exhibited highparent heterosis for head weight (1–30 g) and stem diameter (0.2–3.5 cm) when averaged across environments. Almost all hybrids showed highparent heterosis for plant height (1–10 cm) and width (2–13 cm). Unlike other traits, there was negative heterosis for maturity, indicating that heterosis for this character in hybrids is expressed as earliness. Genetic similarity estimates among the nine parental lines ranged from 0.43 to 0.71 and were significantly and negatively correlated with highparent heterosis for all traits except for stem diameter and days from transplant to harvest. Euclidean distances were not correlated with heterosis. With modern broccoli inbreds, less heterosis was observed for head characteristics than for traits that measured plant vigor. In addition, genetic similarity based on molecular markers was more highly correlated with plant vigor characteristics than head traits. Unlike with molecular marker-based estimates of genetic similarity, euclidean distance determined using phenotypic trait data was not predictive of heterosis. In conclusion, this study has documented heterosis in Brassica oleracea L., and the ability to predict heterosis in this crop using molecular marker-based estimates of genetic similarity among parents used in producing the hybrid. The contents of this publication do not necessarily reflect the views or policies of the USDA, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked as advertisement solely to indicate this fact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号