首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The PID1/NYGGF4/PCLI1 gene encodes for a protein with a phosphotyrosine-binding domain, which interacts with the lipoprotein receptor-related protein 1. Previous work by us and others suggested a function of the gene in cell proliferation of NIH3T3 fibroblasts and 3T3-L1 pre-adipocytes. The molecular characterization of PCLI1 protein, ectopically expressed in NIH3T3 fibroblasts, revealed two phosphorylation sites at Ser154 and Ser165. In order to clarify the functions of this gene, we analyzed the effects of its downregulation on cellular proliferation and cell cycle progression in NIH3T3 cell cultures. Downregulation of PID1/NYGGF4/PCLI1 mRNA levels by short hairpin RNAs (shRNAs) elicited decreased proliferation rate in mammalian cell lines; cell cycle analysis of serum-starved, synchronized NIH3T3 fibroblasts showed an increased accumulation of shRNA-interfered cells in the G1 phase. Decreased levels of FOS and MYC mRNAs were accordingly associated with these events. The molecular scenario emerging from our data suggests that PID1/NYGGF4/PCLI1 controls cellular proliferation and cell cycle progression in NIH3T3 cells.  相似文献   

2.
We studied the effect of heparin on proliferation and signalling in normal NIH/3T3 fibroblasts, and in cells transformed by different oncogenes. Heparin inhibited the proliferation of normal as well as of v-sis and v-erbB transformed fibroblasts in the presence of serum, but failed to inhibit v-erbB-driven proliferation in serum-starved cultures; under these conditions, heparin inhibited by approximately 50% the proliferation of normal and v-sis- transformed cells. Heparin also inhibited PDGF-induced cell proliferation and inositol lipid turnover in v-sis transformants, but it did not affect PDGF mitogenic signalling in NIH/3T3 fibroblasts.  相似文献   

3.
目的构建pcDNA3.1-STK15表达质粒,探讨STK15基因对小鼠成纤维细胞(NIH3T3)的影响。方法构建pcDNA3.1-STK15质粒,将其转染NIH3T3,应用RT-PCR、免疫细胞化学和Western印迹方法检测STK15的表达;MTT法检测细胞增殖能力;Transwell检测细胞侵袭能力。结果转染pcDNA3.1-STK15质粒的NIH3T3细胞在48 h有STK15的表达,而且该细胞的增殖速度和穿透Matrigel胶的细胞数均明显高于对照组(P〈0.05)。结论STK15基因具有增加细胞增殖和细胞侵袭力的功能,进而形成肿瘤。  相似文献   

4.
Necl-5/Tage4/poliovirus receptor/CD155 has been shown to be the poliovirus receptor and to be up-regulated in rodent and human carcinoma. We have found previously that mouse Necl-5 regulates cell motility. We show here that mouse Necl-5 is furthermore involved in the regulation of cell proliferation. Studies using a specific antibody against Necl-5 and a dominant negative mutant of Necl-5 revealed that Necl-5 enhanced the serum-induced proliferation of NIH3T3, Swiss3T3, and mouse embryonic fibroblast cells. Necl-5 enhanced the serum-induced activation of the Ras-Raf-MEK-ERK signaling, up-regulated cyclins D2 and E, and down-regulated p27(Kip1), eventually shortening the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 similarly enhanced the platelet-derived growth factor-induced activation of the Ras-Raf-MEK-ERK signaling and shortened the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 acted downstream of the platelet-derived growth factor receptor and upstream of Ras. Moreover, up-regulated Necl-5 was involved at least partly in the enhanced proliferation of transformed cells including NIH3T3 cells transformed by an oncogenic Ras or v-Src. These results indicate that Necl-5 plays roles not only in cell motility but also in cell proliferation.  相似文献   

5.
Hepatocytes from mouse liver with experimental post-toxic cirrhosis (received by means of 10-12 inhalations with CCl4) were fused with serum-deprived (0.2%) resting NIH 3T3 mouse fibroblasts to elucidate mechanisms of liver stroma cells proliferation at cirrhosis. After fusion, nuclei of fibroblasts in such heterokaryons were found to enter into S-period without any exogenous stimulation of cell proliferation (in the medium with low content of serum). The obtained data allow us to suggest that hepatocytes from mouse liver with experimental post-toxic cirrhosis can produce and secrete into the medium (blood) factor (s) capable of stimulating the mesenchymal origin cell proliferation.  相似文献   

6.
Hepatoma-derived growth factor (HDGF) has proliferative, angiogenic, and neurotrophic activity. It plays a putative role in the development and progression of cancer. When expressed in cells, the mitogenic activity of HDGF depends on its nuclear localization, but it also stimulates proliferation when added to the cell culture medium. A cell surface receptor for HDGF has not been identified so far. We investigated the interaction of various purified recombinant HDGF fusion proteins with the cell surface of NIH 3T3 fibroblasts. We showed that binding of a HDGF-beta-galactosidase fusion protein to the cell surface of NIH 3T3 fibroblasts was saturable, occurred with high affinity (K(D) = 14 nm), and had a proliferative effect. We identified a peptide comprising amino acid residues 81-100 within the amino-terminal part of HDGF that bound to the cell surface of NIH 3T3 cells with saturation and affinity values similar to those of HDGF. When added to primary human fibroblasts, this peptide stimulated proliferation. Substitution of a single amino acid (K96A) within this peptide was sufficient to abolish its binding to the cell surface and its proliferative activity. In contrast, when expressed transiently in NIH 3T3 cells, a HDGF-beta-galactosidase fusion protein in which amino acid residues 81-100 were deleted still had proliferative activity, whereas a fusion protein containing only the 81-100 peptide did not. Our results suggest the existence of a plasma membrane-located HDGF receptor for which signaling depends on amino acid residues 81-100 of HDGF. This region differs from the one that has been recently identified to be essential for mitogenic activity depending on the nuclear localization of HDGF. Thus, HDGF exerts its proliferative activity via two different pathways.  相似文献   

7.
Resident peritoneal mouse macrophages (non-dividing differentiated cells) were fused with mouse embryo fibroblasts (cells with a limited lifespan), NIH 3T3 and C3H 10T 1/2 cells ('immortal' cell lines) and SV 3T3 cells (a malignant cell line). DNA synthesis was investigated in the resultant heterokaryons. No inhibitory effect upon the transition of NIH 3T3 and mouse embryo fibroblasts nuclei to the S-phase was observed. C3H 10T 1/2, NIH 3T3 and SV 3T3 cells induced the reactivation of DNA synthesis in the macrophage nuclei in the heterokaryons. At the same time, no replication was detected in the macrophage nuclei after fusion with mouse embryo fibroblasts.  相似文献   

8.
Lu Y  Liu S  Zhang S  Cai G  Jiang H  Su H  Li X  Hong Q  Zhang X  Chen X 《Molecules and cells》2011,31(3):225-230
Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays various roles in cell growth in different cell types. However, few studies have focused on TIMP-1’s effect on fibroblast cells. In this study, we investigated the effects of TIMP-1 overexpression on NIH3T3 fibroblast proliferation and potential transduction signaling pathways involved. Overexpression of TIMP-1, by transfection of the pLenti6/V5-DESTTIMP-1 plasmid, significantly promoted NIH3T3 proliferation as determined by the BrdU array. Neither 5 nor 15 nM GM6001 (matrix metalloproteinase system inhibitor) affected NIH3T3 proliferation, but 45 nM GM6001 inhibited proliferation. TIMP-1 overexpression activated the p-Akt pathway, but not the p-ERK or p-p38 pathway. In TIMP-1-transfected cells, cyclinD1 was upregulated and p21CIP1 and p27KIP1 were downregulated, which promoted cell entry into the S and G2/M phases. The PI3-K inhibitor LY294002 abolished the TIMP-1-induced effects. Overexpression of intracellular TIMP-1 stimulated NIH3T3 fibroblast proliferation in a matrix metalloproteinase (MMP)-independent manner by activating the p-Akt pathway and related cell cycle progression.  相似文献   

9.
Previous data show a relation between GSH content and proliferation of normal and tumour cells. We recently demonstrated a specific involvement of GSH in the autophosphorylation activity of the platelet-derived growth factor (PDGF) receptor in NIH3T3 fibroblasts. In this study we demonstrate that the stimulation by PDGF of serum-starved NIH3T3 cells increases cellular GSH content, while no change in oxidized GSH content was measured. Experiments performed with actinomycin, cycloheximide and buthionine sulfoximide, a specific inhibitor of the rate-limiting enzyme of the de novo synthesis of GSH gamma-glutamylcysteine synthetase (gamma-GCS), confirm PDGF induction of GSH synthesis. These results provide the first demonstration that PDGF mediated transduction signals seem strictly related to mechanisms involved in the increase of gamma-GCS activity associated with increased gamma-GCS heavy subunit mRNA levels. In fact, serum and epidermal growth factor (EGF) stimulation of quiescent NIH3T3 and NIH3T3, which overexpress EGF receptor, does not affect GSH content or its synthesis. These data may be related to a possible GSH role in the redox regulation of cell proliferation mediated by PDGF.  相似文献   

10.
Polyamines are small cationic molecules required for cellular proliferation. Agmatine is a biogenic amine unique in its capacity to arrest proliferation in cell lines by depleting intracellular polyamine levels. We previously demonstrated that agmatine enters mammalian cells via the polyamine transport system. As polyamine transport is positively correlated with the rate of cellular proliferation, the current study examines the antiproliferative effects of agmatine on cells with varying proliferative kinetics. Herein, we evaluate agmatine transport, intracellular accumulation, and its effects on antizyme expression and cellular proliferation in nontransformed cell lines and their transformed variants. H-ras- and Src-transformed murine NIH/3T3 cells (Ras/3T3 and Src/3T3, respectively) that were exposed to exogenous agmatine exhibit increased uptake and intracellular accumulation relative to the parental NIH/3T3 cell line. Similar increases were obtained for human primary foreskin fibroblasts relative to a human fibrosarcoma cell line, HT1080. Agmatine increases expression of antizyme, a protein that inhibits polyamine biosynthesis and transport. Ras/3T3 and Src/3T3 cells demonstrated augmented increases in antizyme protein expression relative to NIH/3T3 in response to agmatine. All transformed cell lines were significantly more sensitive to the antiproliferative effects of agmatine than nontransformed lines. These effects were attenuated in the presence of exogenous polyamines or inhibitors of polyamine transport. In conclusion, the antiproliferative effects of agmatine preferentially target transformed cell lines due to the increased agmatine uptake exhibited by cells with short cycling times. polyamines; antizyme; ornithine decarboxylase; polyamine transport  相似文献   

11.
12.
Kim SE  Choi KY 《Cellular signalling》2007,19(7):1554-1564
WNT3a stimulates proliferation of NIH3T3 cells via activation of the extracellular signal-regulated kinase (ERK) pathway. The RAF-1-->MEK-->ERK cascade was immediately increased by WNT3a treatment, however, the upstream event triggering ERK pathway activation by WNT3a is not clear. WNT3a activated RAS and WNT3a-induced ERK activation was blocked by dominant-negative RAS, indicating that WNT3a might act upstream of RAS. WNT3a-induced ERK pathway activations were blocked by AG1478, the epidermal growth factor receptor (EGFR) inhibitor, and EGFR siRNA. The WNT3a-induced ERK pathway activation was not observed in fibroblasts retaining defective EGFR, but the WNT3a effect was restored by EGFR reconstitution. These results indicate involvement of EGFR in the WNT3a-induced ERK pathway activation. WNT3a-induced motility and cytoskeletal rearrangement as well as proliferation of NIH3T3 cells were blocked by AG1478 and EGFR siRNA or abolished in EGFR knock-out fibroblasts, indicating involvement of EGFR in those cellular processes. WNT3a-induced ERK pathway activation was not affected by Dickkoff-1 (DKK-1), although WNT3a-induced activations of the WNT/beta-catenin pathway and proliferation were reduced by DKK-1. EGFR is involved in WNT3a-induced proliferation via both routes dependent on and independent of the WNT/beta-catenin pathway. These results indicate that WNT3a stimulates proliferation and motility of NIH3T3 fibroblasts via EGFR-mediated ERK pathway activation.  相似文献   

13.
ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC). If reconstituted in artificial bilayers, ICln can form ion channels with biophysical properties related to RVDC. We investigated (i) the cytosol versus cell membrane distribution of ICln in rat kidney tubules, NIH 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and LLC-PK1 epithelial cells, (ii) fluorescence resonance energy transfer (FRET) in living fibroblasts between fluorescently tagged ICln and fluorochromes in the cell membrane, and (iii) possible functional consequences of an enhanced ICln presence at the cell membrane. We demonstrate that ICln distribution in rat kidneys depends on the parenchymal localization and functional state of the tubules and that cell swelling causes ICln redistribution from the cytosol to the cell membrane in NIH 3T3 fibroblasts and LLC-PK1 cells. The addition of purified ICln protein to the extracellular solution or overexpression of farnesylated ICln leads to an increased anion permeability in NIH 3T3 fibroblasts. The swelling-induced redistribution of ICln correlates to altered kinetics of RVDC in NIH 3T3 fibroblasts, LLC-PK1 cells, and MDCK cells. In these cells, RVDC develops more rapidly, and in MDCK cells the rate of swelling-induced depolarization is accelerated if cells are swollen for a second time. This coincides with an enhanced ICln association with the cell membrane.  相似文献   

14.
Mouse bone marrow-derived cultured mast cells proliferate on +/+ mouse embryo-derived 3T3 fibroblasts, but not on Sl/Sld mouse embryo-derived 3T3 fibroblasts, in the absence of IL-3 and IL-4 (Fujita et al: Proc. Natl. Acad. Sci. U.S.A. 86:2888-2891, 1989). To further characterize the mast cell-fibroblast interactions and the effects of Sl mutation, we tried to analyze the adhesion of cultured mast cells to 3T3 fibroblasts in vitro. Mast cells plated onto NIH/3T3 fibroblasts showed marked adhesion within 30 min, which reached a plateau after 3 h. The numbers of adhered mast cells were linear over the range of 10(3) to 5 x 10(5) cells inoculated into each (2 cm2) of 24 multiwells. Adhesion required active energy production and the presence of divalent cations. It was not inhibited by an RGD-containing peptide, an anti-LFA-1 antibody, or asialofetuin. Mast cells adhered efficiently to the eight 3T3 cell lines derived from +/+ mouse embryos, but not to the eight 3T3 cell lines derived from Sl/Sld mouse embryos. Adhesion to +/+ mouse spleen-derived fibroblasts lacking mast cell-supporting activity was comparable to that to Sl/Sld/3T3 cells. The failure of mast cells to adhere to fibroblasts with the Sl mutations was not due to a production of a diffusible inhibitor by the latter. These results indicate that production of wild type Sl gene product by fibroblasts is mandatory for adhesion/migration, as well as for proliferation of mast cells on them, and that the coculture system should be useful for the biochemical and molecular analysis of these interactions.  相似文献   

15.
The proliferation of Chinese hamster fibroblasts (CHF) and NIH 3T3 cells was studied at different flow rates immediately above the cells. It is shown that there is a limiting density of saturation of the perfused culture that accounts for 1.7 x 10(6) - 2.0 x 10(6) cells/cm2 for NIH 3T3 cells, and for 6 x 10(6) - 7 x 10(6) cells/cm2 for CHF. The growth curves and the distribution of cells with respect to the phases of the cell cycle during cultivation with and without perfusion are presented. Based on the results obtained it is assumed that the limit of saturation density of perfused CHF culture is due to the mass transfer of the growth-inhibiting metabolites inside the multilayer structures. The assumption seems to hold true for NIH 3T3 cells, too, even though the multilayer character of growth of this culture is less pronounced than in CHF.  相似文献   

16.
Interactions with stromal components influence the growth, survival, spread, and colonization capacities of tumor cells. Fibroblasts and macrophages which are responsible for the stroma production and maintenance are of the basic elements found in tumor microenvironment. Cellular density and ratio of stromal cells to tumor cells can also have modulatory effects in cancer. Here, the contribution of fibroblast and/or macrophage cells on the malignant behavior of breast cancer cells was modeled in co-culture systems. Co-cultures were established at different cell densities and ratios with 4T1 breast cancer, NIH/3T3 or 3T3-L1 fibroblast, and J774A.1 monocyte/macrophage cell lines. Flow cytometry-based proliferation, 3D growth on alginate matrix, and matrigel invasion assays were performed to determine the change in the malignant assets of tumor cells. The data were also supported by immunocytochemical and morphological analyses. Co-culturing with fibroblasts (especially, NIH/3T3 cells) significantly supported the proliferation, scattering, and invasiveness of 4T1 cells whereas inclusion of macrophages disrupted this positive influence. On the other hand, the invasion capacity of 4T1 cells was not enhanced in the co-cultures with fibroblasts whose motility were inhibited with pertussis toxin pretreatment. Particularly at low-density seeding in 3D cultures, 4T1 cells could form substantially more spheroids than that of in the co-cultures with fibroblasts. Only, increasing the amount of fibroblasts could restore the 3D-growth. Intriguingly, co-existence of macrophage, fibroblast, and tumor cells in 3D cultures provided a convenient stroma sustaining the spheroid formation and growth. In conclusion, fibroblasts can form a favorable environment for tumor cells’ spread and motility whereas restricting their 3D-growth capacity. On the other hand, presence of macrophages may disrupt the influence of fibroblasts and enhance the spheroid formation by the tumor cells.  相似文献   

17.
18.
Repigmentation of vitiliginous lesions relies on the proliferation and migration of melanoblasts from hair follicles to the epidermis. Pulsed ultrasound has been demonstrated to have stimulatory effects on cell proliferation and migration and has been applied clinically to enhance tissue repair. To clarify the biologic effects and signaling mechanisms of pulsed ultrasound on melanoblast proliferation and migration, two melanoblast cell lines, the undifferentiated NCCmelb4 cells and the differentiated NCCmelan5 cells, were examined. We demonstrated that pulsed ultrasound increased cell migration in a dose‐dependent manner without altering cell proliferation. Pulsed ultrasound enhanced autocrine secretion of macrophage colony‐stimulating factor (M‐CSF), which subsequently activated the focal adhesion kinase (FAK) pathway to promote melanoblast migration. Furthermore, conditioned medium from mouse embryonic fibroblasts NIH 3T3 and primary human keratinocytes treated with pulsed ultrasound could stimulate melanoblast migration through a paracrine effect. Our results provide a novel mechanism to promote migration of melanoblasts by pulsed ultrasound stimulation.  相似文献   

19.

Background

Mesenchymal-to-epithelial transition (MET) is associated with altered cell adhesion patterns. Independent studies showed that cellular adhesion regulates low-dose hyper-radiosensitivity (HRS), a phenomenon reported widely in tumour cells. Therefore, present study aimed to investigate whether MET and associated cellular adhesion alterations affect cellular radiosensitivity.

Methods

We established multiple stages of MET by in vitro transformation of NIH3T3 mouse embryonic fibroblasts. Nutritional deprivation followed by repetitive treatment cycles of 3-methylcholanthrene and phorbol-12-myristate-13-acetate with frequent isolation of foci established three progressive strains (NIH3T3.1, NIH3T3x3, NIH3T3x8x3) depicting MET, and one strain (NIH3T3x12) with partial reversion. Alterations in morphology, cell adhesion properties, expression/intracellular localization of cell adhesion proteins, microRNA expression and cellular radiosensitivity were studied in these stably transformed cell strains.

Results

All four transformants had increased proliferation rate, saturation density, bipolarity, E-cadherin expression; coupled with reduced cell size/spreading, pseudopodia/migration, and fibroblast marker protein and vimentin. The most aggressive trans-differentiated (phenotypically epithelial) cell strain, NIH3T3x8x3 acquired ~ 30% higher growth potential associated with more than two-fold reduction in cell size and migration. These phenotypic changes accompanied ~ 40% reduction in endogenous or radiation-induced connexin-43 expression/mitochondrial translocation. Incidentally, all three progressive strains displayed prominent HRS (αsr: 7.95–37.29) whereas parental (NIH3T3) and reverting (NIH3T3x12) strains lacked HRS and had distinct radiation-induced Cx43 translocation into mitochondria.

Conclusion

Our study shows that trans-differentiating fibroblasts progressively acquiring epithelial features during MET process, display low-dose hyper-radiosensitivity associated with altered Cx43 behaviour.

General significance

This study demonstrates that MET progression triggers low-dose hyper-radiosensitivity in trans-differentiating cells, which has significant therapeutic implications.  相似文献   

20.
Immunoglobulin-like Necl-5/Tage4/poliovirus receptor (PVR)/CD155, originally identified as the PVR, has been shown to be up-regulated in cancer cells and to enhance growth factor-induced cell movement and proliferation. In addition, Necl-5 heterophilically trans-interacts with nectin-3, a cell-cell adhesion molecule known to form adherens junctions in cooperation with cadherin. We show here that Necl-5 was down-regulated from cell surface upon cell-cell contacts in NIH3T3 cells. This down-regulation of Necl-5 was initiated by its interaction with nectin-3 and was mainly mediated by clathrin-dependent endocytosis. Then, the down-regulation of Necl-5 induced in this way reduced movement and proliferation of NIH3T3 cells. These results indicate that the down-regulation of Necl-5 induced by its interaction with nectin-3 upon cell-cell contacts may be at least one mechanism underlying contact inhibition of cell movement and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号