首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity
Authors:Abouzied Mekky M  El-Tahir Heba Mahmoud  Prenner Lars  Häberlein Hanns  Gieselmann Volkmar  Franken Sebastian
Institution:Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms Universit?t, Nussallee 11, 53115 Bonn, Germany.
Abstract:Hepatoma-derived growth factor (HDGF) has proliferative, angiogenic, and neurotrophic activity. It plays a putative role in the development and progression of cancer. When expressed in cells, the mitogenic activity of HDGF depends on its nuclear localization, but it also stimulates proliferation when added to the cell culture medium. A cell surface receptor for HDGF has not been identified so far. We investigated the interaction of various purified recombinant HDGF fusion proteins with the cell surface of NIH 3T3 fibroblasts. We showed that binding of a HDGF-beta-galactosidase fusion protein to the cell surface of NIH 3T3 fibroblasts was saturable, occurred with high affinity (K(D) = 14 nm), and had a proliferative effect. We identified a peptide comprising amino acid residues 81-100 within the amino-terminal part of HDGF that bound to the cell surface of NIH 3T3 cells with saturation and affinity values similar to those of HDGF. When added to primary human fibroblasts, this peptide stimulated proliferation. Substitution of a single amino acid (K96A) within this peptide was sufficient to abolish its binding to the cell surface and its proliferative activity. In contrast, when expressed transiently in NIH 3T3 cells, a HDGF-beta-galactosidase fusion protein in which amino acid residues 81-100 were deleted still had proliferative activity, whereas a fusion protein containing only the 81-100 peptide did not. Our results suggest the existence of a plasma membrane-located HDGF receptor for which signaling depends on amino acid residues 81-100 of HDGF. This region differs from the one that has been recently identified to be essential for mitogenic activity depending on the nuclear localization of HDGF. Thus, HDGF exerts its proliferative activity via two different pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号