首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
等渗的盐分和水分胁迫对杠柳种子萌发的影响   总被引:6,自引:3,他引:3  
马闯  张文辉  刘新成 《植物研究》2008,28(4):465-470
通过等渗的NaCl和PEG溶液模拟盐分和水分胁迫,设置渗透梯度,在控制条件下对杠柳种子的萌发过程中总萌发率、幼苗鲜重、胚根生长、种子活力、发芽值等指标系统研究,对种子萌发率与渗透势之间关系进行回归分析,主要结果包括:(1)杠柳种子萌发过程中总萌发率、幼苗鲜重、活力指数和发芽值四项指标均随NaCl和PEG溶液的渗透势降低逐渐下降,综合研究活力指数和发芽值表明渗透势≥-0.5 MPa和≤-1.4 MPa时,PEG对种子萌发抑制作用大于NaCl,其他情况相反;(2)杠柳种子逐日萌发率和胚根日变化研究表明,与NaCl相比,PEG推迟杠柳种子萌发,并且对胚根增长抑制作用较大;(3)建立盐分和水分胁迫条件下种子萌发率与渗透势回归方程,发现杠柳种子在PEG胁迫下的萌发临界值和极限值为-1.0和-1.4 MPa,在NaCl胁迫下是-0.9和-1.3 MPa,解除胁迫条件,不同处理的杠柳种子复水萌发率均达到100%。说明杠柳具有良好的耐盐抗旱的特性。  相似文献   

2.
干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响   总被引:3,自引:0,他引:3  
为探明鹿角杜鹃种子萌发和幼苗生长期的耐旱性,以鹿角杜鹃干种子和90d苗龄幼苗为材料,采用聚乙二醇(PEG-6000)模拟不同程度的干旱胁迫,研究干旱胁迫对其种子萌发、早期幼苗生长及幼苗的细胞膜透性、MDA含量、有机渗透调节物质和抗氧化酶活性的影响,并对种子萌发率、早期幼苗生长量与PEG胁迫浓度间进行了回归分析。结果表明:(1)5%~25%PEG胁迫范围内,随着干旱胁迫程度的增加,鹿角杜鹃种子的发芽启动时间推迟,发芽持续时间延长,发芽率、发芽势、发芽指数、活力指数和幼苗生长量显著降低;重度干旱胁迫(25%PEG)下,鹿角杜鹃种子完全未萌发。(2)发芽率、发芽势、发芽指数、活力指数以及幼苗生长量的变化均与干旱胁迫程度呈极显著负相关关系,回归分析求得鹿角杜鹃种子萌发的半致死PEG干旱胁迫浓度为15.68%、半致矮PEG干旱胁迫浓度为15.37%。(3)随着PEG胁迫浓度的增加,鹿角杜鹃幼苗叶片SOD活性呈先升后降的趋势,但各胁迫处理仍显著高于CK(0%PEG);细胞膜透性、MDA、脯氨酸、可溶性糖含量、POD和CAT活性则在中度(15%~20%PEG)和重度胁迫下显著升高,与干旱胁迫程度呈极显著正相关关系。研究表明,干旱胁迫显著抑制了鹿角杜鹃种子萌发和早期幼苗生长,使其细胞膜受到损伤,同时鹿角杜鹃可通过体内渗透调节物质和抗氧化酶活性的增加来适应干旱环境,使得自身受抑制、损伤程度降到最低。  相似文献   

3.
为探讨旱、盐胁迫对不同海拔、生长年限和贮藏时间的药用大黄种子萌发和幼苗生长的影响,以采自陕西汉中镇巴县的药用大黄种子为研究对象,纯净水(CK)为对照组,置于用以模拟干旱和盐胁迫的不同渗透势水平(-0.3和-0.5 MPa)的PEG和NaCl处理下,每日记录种子萌发个数并观察幼苗生长情况。结果表明:相比低和高海拔的种子,中海拔1650 m处采集的种子萌发率更高,且海拔1650和1300 m处的种子对干旱和盐胁迫的耐受力强;随着胁迫浓度的增加,干旱胁迫对药用大黄幼苗生长的抑制作用极其显著,在-0.5 MPa PEG处理下所有幼苗均死亡;不同海拔、不同生长年限及不同贮藏期的种子内源赤霉素含量无明显差异,而赤霉素浸种后种子活力和内源赤霉素浓度显著升高;室温贮藏1年的大黄种子发芽率、活力、耐盐性显著低于新采集的种子,而3年生植株种子发芽率、活力、耐盐性均高于2年生且耐旱性更强。综上可知,药用大黄种子不适宜长期室温贮藏,中海拔以及轻度盐胁迫有助于药用大黄种子萌发及幼苗生长,且3年生药用大黄种子质量高于2年生。  相似文献   

4.
几种旱生灌木种子萌发对干旱胁迫的响应   总被引:60,自引:5,他引:55  
以不同渗透势的PEG(6 0 0 0 )溶液 (- 0 .3~ - 2 .7MPa)为模拟干旱胁迫条件 ,研究了柠条 (Caraganakorshinskii)、花棒 (Hedysarumscoparium)和白沙蒿 (Artemisiasphaerocephala)种子发芽、幼苗生长和累积吸水率对干旱胁迫的响应 ,讨论了参试种子发芽特性、初生根长度与幼苗建植成活率的关系 .结果表明 ,干旱胁迫下柠条发芽率最高 ,其次为花棒 ,白沙蒿最低 . - 0 .3~ - 0 .6MPa渗透势下白沙蒿发芽 10d的初生根长度显著大于花棒和柠条 (P <0 .0 5 ) ,三者的测量值依次为 7.9、4 .5和 3.1cm .干旱胁迫条件下参试种子发芽率与种子 72h累积吸水率均呈极显著的正相关 (P <0 .0 1) .  相似文献   

5.
入侵植物牛膝菊种子萌发对PEG模拟干旱胁迫的响应   总被引:5,自引:0,他引:5  
采用浓度分别为5%、10%、15%、20%和25%的PEG-6000溶液模拟干旱条件,测定不同干旱胁迫条件下牛膝菊的种子萌发时间、萌发率、日相对萌发率、发芽势、发芽指数、活力指数及幼苗的初生根与胚芽的长度等指标,研究了干旱胁迫对牛膝菊种子萌发及幼苗生长的影响,探讨了经PEG浸种预处理后种子的萌发恢复能力。结果表明:随着水分胁迫的加重,牛膝菊种子萌发和幼苗生长受到抑制程度增加,牛膝菊种子的日相对萌发率、发芽率、发芽势和发芽指数、活力指数及幼苗的初生根长和胚芽长均呈下降趋势;与对照组相比,牛膝菊种子首次萌发时间延迟越长,当PEG浓度为20%、25%时牛膝菊种子未见萌发;本研究建立了水分胁迫PEG浓度与种子萌发率的线性回归方程,得出牛膝菊种子萌发的PEG浓度临界值为12.9%;经PEG浓度为20%、25%处理的种子在适宜条件下可以恢复萌发,浸种时间相同条件下,20%PEG浓度对牛膝菊种子伤害较小,其恢复性较强,25%PEG浓度对牛膝菊种子伤害较大,其恢复性较弱。  相似文献   

6.
以‘拉丁诺’白三叶为材料,用0、10%、15%、20%(W/V)的聚乙二醇(PEG-6000)溶液模拟干旱条件,研究亚精胺(Spd)浸种对渗透胁迫下白三叶种子萌发和淀粉代谢的影响。结果表明,在PEG渗透胁迫下,白三叶种子的发芽率、发芽势、发芽指数、胚芽及胚根鲜重和胚根长度均显著(P<0.05)降低,淀粉水解为糖类的速率减慢;与蒸馏水浸种相比,0.05mmol·L-1Spd浸种处理显著(P<0.05)提高了在渗透胁迫条件下种子的发芽率、发芽势、发芽指数、胚芽及胚根鲜重、干重和胚根长度,同时大幅提高了α-淀粉酶、β-淀粉酶及(α+β)-淀粉酶总活性,降低了淀粉含量,增加了还原糖和葡萄糖含量。说明Spd浸种提高了白三叶种子在渗透胁迫下的萌发能力和幼苗生长的环境适应性,这可能与增强种子体内淀粉酶活性,加速淀粉水解为还原糖和葡萄糖,为种子萌发和幼苗早期生长及时提供充足能量有关。  相似文献   

7.
模拟水分胁迫对不同种源麻楝种子萌发能力的影响   总被引:3,自引:0,他引:3  
以麻楝6个种源种子为试验材料,用不同浓度的聚乙二醇(PEG)溶液模拟干旱胁迫,探讨干旱胁迫对种子发芽率、发芽势、发芽指数、活力指数以及幼苗苗高和胚根长及根苗比的影响,为麻楝的引种和推广种植提供依据。结果显示:(1)不同水势胁迫处理均降低了麻楝种子的发芽率和发芽势,当水势为-0.40MPa时延缓了种子萌发进程;种子的发芽率、发芽势、发芽指数和活力指数均随干旱胁迫强度的增加呈明显下降的趋势;当胁迫水势为-0.86MPa时,干旱胁迫处理的种子在试验结束时仍未能萌发,即-0.86MPa是麻楝种子萌发的临界水势。(2)当胁迫水势高于-0.40MPa时,麻楝幼苗的胚根长度与对照组差异不显著且长于对照组,说明高于-0.40MPa的水势有利于麻楝种子胚根的生长;麻楝幼苗苗高生长则是随着PEG浓度的升高而逐渐减缓。(3)适当的干旱胁迫可以增大各种源麻楝幼苗根苗比,且在胁迫水势高于-0.20MPa时都达到最大值。研究表明,麻楝种子具有一定的抗干旱胁迫的萌发能力,并以来自缅甸的Khin Aye Pale和泰国的Phu Wiang材料较强,来源于中国三亚和马来西亚Ulu Tranan的较弱。  相似文献   

8.
周玲  王乃江  张丽楠 《西北植物学报》2012,32(11):2293-2298
在种子发芽箱中,以清水为对照,用5%、10%、15%、20%、25%、30%和35%共7个浓度聚乙二醇(PEG-6000)溶液浇灌栽培基质,观察文冠果种子的萌发和幼苗生长情况,以及幼苗叶片脯氨酸、丙二醛的含量和细胞膜相对透性的变化,探讨文冠果种子萌发对土壤水分的要求及其幼苗忍耐干旱的能力。结果显示:(1)在PEG浓度5%~35%范围内,文冠果种子发芽率、成苗率、幼苗根长和细胞膜透性均随着胁迫强度的增加呈明显的下降趋势;细胞膜透性随着胁迫强度的增加先升高后降低,但脯氨酸、丙二醛含量和幼苗根数量则呈现逐渐上升趋势。(2)5%的PEG浓度能够促进文冠果种子萌发,提高成苗率和根数量,降低幼苗死亡率;5%~10%的PEG能够明显促进苗高生长,但对根长影响不大;当PEG浓度高于15%后,种子萌发受到抑制,成苗率明显降低。(3)当PEG浓度高于25%时幼苗死亡率急剧上升,幼苗脯氨酸含量、丙二醛含量和细胞膜透性显著增加,细胞膜结构受到严重伤害。研究表明,低浓度PEG处理有利于文冠果种子萌发和幼苗生长,但过高浓度却对文冠果种子萌发和幼苗生长具有一定的抑制作用;文冠果种子萌发及其幼苗可忍受5%~25%的PEG渗透胁迫,即文冠果种子萌发和幼苗生长可忍受土壤水势为-7.94~-11.05MPa的干旱胁迫。  相似文献   

9.
聚乙二醇(PEG6000)模拟干旱胁迫抑制矮沙冬青种子的萌发   总被引:8,自引:0,他引:8  
本研究以新疆特有濒危保护植物矮沙冬青(A mmmopiptanthus nanus(M.Pop.)Cheng f.)的种子为材料,用不同渗透势浓度的聚乙二醇(PEG6000)模拟干旱胁迫,探讨干旱胁迫对矮沙冬青种子发芽率、平均发芽速度、胚轴和胚根长度及发芽指数、活力指数的影响.结果表明,不同浓度PEG胁迫处理均降低了种子的发芽率,延缓了矮沙冬青种子萌发进程;种子的发芽率、发芽指数和活力指数均随胁迫强度的增加呈明显下降趋势.当-1.20 MPa的PEG胁迫处理的种子在试验结束时仍未能萌发,表明-1.20 MPa是矮沙冬青种子萌发的临界水势.PEG模拟干旱胁迫中,当PEG处理为-0.2 MPa时,虽然最终发芽率与对照一样,但其胚根、胚轴的长度都比对照短,说明矮沙冬青胚根、胚轴的生长比发芽率对干旱胁迫更敏感.干旱胁迫可能是导致矮沙冬青种群天然更新能力弱的原因之一.本研究将为矮沙冬青种质资源的保护和种群的恢复提供科学依据.  相似文献   

10.
用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析   总被引:24,自引:2,他引:22  
本以聚乙二醇(PEG)-6000、甘露醇和蔗糖作为渗透剂模拟水分胁迫,胁迫溶液渗透势范围在-0.25MPa到-1.50MPa,分析适于进行小麦种子水分胁迫萌发试验的条件,以鉴定小麦萌发期的抗旱性。结果表明,蔗糖溶液易诱发霉茵,胚芽不能正常生长。渗透势为-0.25MPa的PEG-6000及-0.50MPa的甘露醇胁迫已经显抑制了胚芽伸长;-0.50MPa的PEG-6000及-1.00MPa的甘露醇显抑制种子萌发,随着胁迫强度增加,种子相对发芽率及胚芽长度减小,主要是因为渗透胁迫降低了种子吸水速度,胚芽的相对含水量和渗透势均低。在渗透势相同的胁迫条件下,PEG-6000对小麦种子萌发各项检测值的抑制作用均大于甘露醇。如果目的是通过鉴定小麦种子在高渗溶液中的萌发情况,评价萌发期的抗旱性。选用-0.50MPa的PEG-6000或-1.00MPa的甘露醇较为理想,若同时考虑降低试验成本,则应首选-0.50MPa的PEG-6000。  相似文献   

11.
陈士超  王猛  汪季  高永  刘宗奇  王香 《生态学杂志》2017,28(9):2923-2931
用不同质量浓度PEG6000(0%、5%、10%、15%、20%、25%、30%,渗透势分别为0、-0.06、-0.17、-0.32、-0.53、-0.79、-1.10 MPa)控制渗透势,研究紫花苜蓿种子萌发及幼苗生理特性对不同渗透势的响应.结果表明: 种子5项萌发指标均随渗透势降低呈先升后降趋势,-0.06 MPa时萌发指数和活力指数最高,-0.17 MPa时发芽率、发芽势和发芽指数最高;幼苗过氧化物酶、超氧化物歧化酶、过氧化氢酶活性和叶绿素含量均随渗透势降低呈先升后降趋势,-0.17 MPa时各指标值最高;叶绿素a/b随渗透势降低呈先降后升趋势,-0.06 MPa时最低;游离脯氨酸、丙二醛含量和相对电导率随渗透势降低而持续升高.渗透势为-0.06~-0.17 MPa时,种子萌发和幼苗生理综合评价结果最优,是最适宜种子萌发的渗透势条件,而当渗透势低于-0.79 MPa时,对种子萌发产生抑制.  相似文献   

12.
为探讨温度对干旱、盐胁迫下黄芪属种子萌发和幼苗生长特性的影响,以黄芪属蒙古黄芪和扁茎黄芪2种种子为研究对象,纯净水处理为对照组,NaCl、PEG处理为实验组,设置4个渗透势水平(0、-0.1、-0.3、-0.5 MPa),置于5种不同的温度(10、15、20、25、30 ℃)下,每日观察并记录两种种子萌发和幼苗生长情况。结果表明:旱盐胁迫下蒙古黄芪和扁茎黄芪种子萌发最适宜的温度分别为25和20 ℃左右;蒙古黄芪耐高温不耐低温,而扁茎黄芪恰恰相反;但25和20 ℃均适宜两种幼苗生长,包括胚根、胚轴和子叶的生长。蒙古黄芪各处理组(除未发芽的种子)的平均发芽时间都比扁茎黄芪长;NaCl胁迫程度的增加使得两种种子的最终发芽率降低,但蒙古黄芪的耐盐性高于扁茎黄芪;随着PEG胁迫程度的增加,二者的发芽均受到抑制,甚至会出现完全不萌发,但扁茎黄芪的耐旱性高于蒙古黄芪;在相同的渗透势时,尤其是-0.5 MPa,PEG比NaCl对两种种子的影响大;交互胁迫作用下,随着渗透势的增加两种幼苗的鲜重、干重以及胚根、胚轴、子叶的长和宽变化较大;利用Design Expert软件预测发现:温度25 ℃、NaCl渗透势为-0.1 MPa,温度24 ℃、PEG渗透势为-0.04 MPa的处理是蒙古黄芪种子萌发和幼苗生长达到最优化的组合;而扁茎黄芪最优化的组合则为23 ℃下NaCl渗透势为-0.07 MPa的处理,20 ℃下PEG渗透势为-0.13 MPa的处理。  相似文献   

13.
扁蓿豆和苜蓿种子萌发期抗旱性和耐盐性比较   总被引:6,自引:0,他引:6  
为明晰扁蓿豆[Medicago ruthenica(Linn.)Trautv.]和苜蓿(Medicago varia Martin.)种子萌发期的抗旱性和耐盐性强弱,以不同浓度的聚乙二醇(PEG-6000)和Na Cl溶液模拟干旱和盐胁迫,研究了不同程度干旱和盐浓度对采自甘肃景泰的扁蓿豆和苜蓿品种阿尔冈金(M.varia Martin.cv."Algonquin")种子萌发和幼苗生长的影响。结果表明,干旱胁迫和盐胁迫降低了扁蓿豆和苜蓿种子的发芽率、发芽指数、活力指数,抑制了胚芽和胚根的生长。-0.3~-0.9 MPa和-1.5 MPa的PEG处理下苜蓿和扁蓿豆种子的相对发芽率间无显著差异,-1.2 MPa的PEG胁迫下苜蓿种子的相对发芽率显著高于扁蓿豆。-0.3~-1.2MPa的PEG胁迫下苜蓿种子的相对发芽指数均显著高于扁蓿豆,其相对芽长无显著差异。Na Cl渗透势为-0.9~-1.5 MPa时,苜蓿种子的相对发芽率显著高于扁蓿豆;-0.3~-1.2 MPa的Na Cl胁迫下苜蓿种子的相对发芽指数和相对活力指数均显著高于扁蓿豆。通过种子萌发期的相对发芽率、相对发芽指数、相对活力指数、相对胚根长和相对胚芽长5项指标,应用隶属函数法对参试材料种子萌发期抗旱性和耐盐性进行综合评价的结果表明,苜蓿品种阿尔冈金种子萌发期的抗旱性、耐盐性均强于来自景泰的扁蓿豆。此结果和人们以往对扁蓿豆和苜蓿的认识"扁蓿豆的抗旱性和耐盐性优于苜蓿"不一致。  相似文献   

14.
大麦种子对盐的发芽响应模型   总被引:1,自引:0,他引:1       下载免费PDF全文
为了明确盐对种子发芽影响的渗透效应和离子效应共同作用方式以及量化种子发芽对盐的响应, 以两个大麦(Hordeum vulgare)品种‘Cask’和‘County’为研究对象, 设置4个恒定温度(5、12、20和27 ℃)、5个等渗的NaCl和聚乙二醇(PEG)浓度梯度(-0.45、-0.88、-1.32、-1.76和-2.20 MPa, 蒸馏水作对照), 做常规发芽实验。结果显示: (1)两个品种在NaCl溶液中比在等渗的PEG溶液中发芽率高且发芽速度快; (2) NaCl和PEG分别作为渗透剂计算出的水势模型参数值差异很大, 说明水势模型不能用来描述种子发芽对盐的响应; (3)大麦种子在盐溶液中的发芽速率与盐浓度成显著的负相关直线关系, 因此我们修订了水势模型, 将修订后的模型命名为盐度模型, 用来量化盐对大麦种子发芽的影响。与水势模型计算出的发芽时间相比, 盐度模型计算出的50%种子发芽时间与大麦种子实际发芽时间更接近; (4)大麦种子在等渗的NaCl和PEG溶液中发芽速率差异随着水势降低, 先增加后降低。据此我们提出盐的渗透效应和离子效应共同作用于种子发芽的3种情况: 第一种在低盐条件下, 主要是渗透效应起负作用; 第二种情况在中盐条件下, 渗透效应和离子效应共同起作用, 离子效用的正作用强于渗透效应的负作用; 第三种情况在高盐条件下, 离子效应逐渐开始起离子毒害的负作用。  相似文献   

15.
Abstract

This study examined Pinus pinea seeds for their tolerance to osmotic potentials of ?0.30MPa (10% polyethylene glycol [PEG]), ?0.58MPa (18% PEG), ?0.80MPa (21% PEG), ?1.05MPa (24% PEG), pH values of 4, 5, 6, 7, 8, 9, 10, and different calcareous solutions (5, 10, 20 and 40% CaCO3). The main enzymes of glyoxylate cycle and respiratory pathway were tested. Pinus pinea seeds under no stressful condition (Control) and 5% CaCO3 reached 100% of germination. Higher concentrations of CaCO3 (20, 40%) and lower pH (4–5) adversely affected seed germination percentage, glyoxylic and respiratory enzyme activities. PEG caused the most detrimental effects on Pinus seeds; increasing the osmotic potential the germination was completely inhibited. These results suggest that Pinus pinea is able to germinate in calcareous and alkaline soils rather than in soils with lower water availability and acidic conditions.  相似文献   

16.
Few plants are habitat-indifferent halophytes (i.e., grow well in both saline and non-saline soils). These plants offer a good opportunity to study drought and salinity tolerances during germination for seeds developed and matured in soils differ in salinity. Here, we assessed drought tolerance during germination, as simulated with PEG, and response of germination to light and temperature for Suaeda vermiculata, a habitat-indifferent shrub. Seeds matured in saline and non-saline soils were germinated in six PEG concentrations (0 to ? 1.0 MPa) and put in three incubators adjusted at different temperatures in both light and dark regimes. Drought tolerance was greater for seeds of the non-saline than those of saline soils, especially at higher temperatures. Seeds of the saline soils germinated in the lowest osmotic potentials (? 0.8 and ??1.0 MPa) only at lower temperatures, but seeds of the non-saline soils germinated to higher levels at all temperatures. Tolerances to drought and high temperatures were greater in light for seeds of saline soils, but in darkness for seeds of non-saline soils. Germination rate index did not differ significantly between seeds of the two soil types in higher osmotic potentials, but was significantly greater in seeds of non-saline at lower osmotic potentials. Most seeds that failed to germinate in the PEG concentrations recovered their germination when transferred to distilled water. Germination recovery levels and speeds increased with the decrease in osmotic potentials. Seeds of the saline soil postpone their germination until arrival of suitable temperatures and effective rainfalls that ensure seedling survival in salty habitats of the arid unpredictable deserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号