首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
鱼类嗅觉器官的形态与生理研究进展   总被引:7,自引:0,他引:7  
对鱼类嗅觉器官的发生、宏观和微观形态结构、嗅觉生理等方面的研究进行了综述;并指出,依据鱼类嗅觉器官开展系统进化方面的研究,以及基于嗅觉分子生理机制而开展的有关行为学方面的研究,可能是未来鱼类嗅觉器官的重要研究方向。  相似文献   

2.
鱼类嗅觉系统和性信息素受体的研究进展   总被引:1,自引:0,他引:1  
鱼类嗅觉系统包括外部嗅觉器官、嗅神经和嗅球三个部分.嗅觉器官也称为嗅囊,由嗅上皮和髓质组成.气味物质的化学信息主要由嗅上皮上随机分布的嗅觉感受神经元感知,通过嗅神经将嗅觉信息传递到嗅球,嗅球在空间上有不同的功能分区,嗅觉信息经过嗅球各分区整合后分别传入端脑,发挥其生理功能.性信息素在鱼类生殖过程中的作用是通过嗅觉系统来完成的,其中嗅觉感受神经元上的性信息素受体起着重要作用.鱼类性信息素受体的研究主要从两个方面入手,一是从低浓度特异的性信息素引起嗅觉器官电生理反应或行为反应入手,寻找特异的性信息素受体;二是参照哺乳动物嗅觉受体的研究结果,从嗅觉受体基因遗传保守性入手,研究鱼类性信息素受体的结构与功能.  相似文献   

3.
2.鱼类的嗅觉通讯许多鱼类的配对行为和社群行为都是由信息素来控制的。通常雌鱼排卵后就会从卵巢中释放出一种信息素(存在于卵巢液中),这种化学物质可激发雄鱼的求偶行为。试验证实,雄性的金鱼(Carassius auratus)单凭嗅觉就能辨识出未排卵和已排卵的雌鱼。  相似文献   

4.
昆虫嗅觉受体的研究进展   总被引:5,自引:2,他引:3  
昆虫的嗅觉对昆虫的栖息地选择、觅食、群集、趋避、繁殖以及信息传递等行为具有重要的影响。对昆虫嗅觉机理的深入研究和嗅觉信号传导途径的完整阐述,是探索农业害虫的专一性防治的基础。嗅觉受体(olfactory receptors,Ors)是G蛋白偶联受体(G protein-coupled receptor)的一种,是嗅觉系统的关键成分。近年来嗅觉受体的研究日益受到关注。本文对昆虫嗅觉的基本过程、基因结构和表达调控特征、蛋白分子结构、生理功能、分布部位和相关配体的研究等进行了综述。  相似文献   

5.
高度灵敏的嗅觉系统,能够帮助昆虫准确识别环境中不同来源的挥发性化合物,在昆虫觅食、交配和产卵等生命活动过程中起着至关重要的作用.通过感觉神经元膜上数量巨大且种类繁多的嗅觉受体,昆虫可以识别不同的气味物质,进而调控其行为.已知的昆虫嗅觉受体主要有三种,离子型受体、气味受体和响应二氧化碳及信息素的味觉受体.目前嗅觉受体的分子结构及其介导的信号转导机制仍然没有得到完整的阐释,嗅觉受体配体的鉴定工作也还任重道远.本综述就昆虫嗅觉受体的结构、进化、功能表征方法以及气味受体介导信号转导的机制等方面的研究进展进行了综述,以期对研究昆虫嗅觉编码和调控,以及昆虫与植物间互作提供一定的理论参考.  相似文献   

6.
昆虫嗅觉相关蛋白的研究进展   总被引:6,自引:0,他引:6  
嗅觉是昆虫产生行为的重要物质基础,阐明昆虫嗅觉机理有助于调控昆虫行为和进行害虫治理。近年来,许多与嗅觉相关的生物活性分子和相关基因的发现和克隆,对揭示嗅觉机理具有重要作用。作者针对近年来研究较多的气味结合蛋白、化学感受蛋白、气味受体、气味降解酶以及感觉神经元膜蛋白等,就其生化特性、表达部位、分子结构、生理功能等进行了综述。  相似文献   

7.
陈明  彭作刚  何舜平 《中国科学C辑》2009,39(11):1057-1068
嗅觉是动物至关重要的感官,而嗅觉受体基因则构成了嗅觉的基础.嗅觉受体跟环境气味分子的相互作用被认为是嗅觉过程发生的第一步.气味分子结合被认为发生在由跨膜区形成的一个口袋结构中,而直接结合位点叫做绑定位点.以往的研究显示,绑定位点可能因为功能分化而受到正向选择.本研究对青鳉和三刺鱼的基因组中鉴定了OR基因,并对这些序列进行了进化分析.通过不同跨膜区与整个编码区的选择压力的比较,发现跨膜区4,5,6有较高的平均Ka/Ks值,这可能在某种程度上由正向选择所致.同时发现,许多受正向选择的位点主要分布在跨膜区.通过进一步分析发现,许多PTSs与哺乳类中推测的绑定位点重叠或邻近.有趣的是,正向选择发生在3个物种特异的分支中.对于三刺鱼中的嗅觉受体基因来说,它们的进化模式似乎遵循一种"适应辐射模型",因为正向选择发生在两个新近扩张的分支中.这些结果均支持鱼类嗅觉受体基因在进化中受到正向选择的假说.  相似文献   

8.
本文从外周、中枢和行为三个不同层次,探讨昆虫对性外激素感受的嗅觉过程。通过对大量昆虫的性外激素组分化学结构鉴定,以及结构一活性关系的研究,促进了对嗅觉机制的了解。对于嗅觉中枢过程的了解是很初步的,有待进一步深入研究。  相似文献   

9.
动物的嗅觉     
嗅觉是动物的感觉机能之一。本文阐述了从低等到高等的不同类群的动物嗅觉感受器的结构以及嗅觉功能的进化。  相似文献   

10.
综述了磁共振脑功能成像(functional MRI,fMRI)在嗅觉研究中的应用,着重介绍fMRI在小动物嗅觉研究中的优势,以及近10年来fMRI在嗅球(olfactory bulb,OB)信息编码、处理和传输机制研究中所取得的进展.作为人类最古老的感觉方式之一,整个嗅觉系统(除鼻腔中的嗅细胞)都属于边缘系统,这赋予嗅觉系统一般的感觉功能和许多不为人所熟知的对情感、记忆以及生理和心理状态调控的功能.同时,由于缺乏有效手段,其内在性也使得嗅觉系统在大脑中的信息编码、处理、传输和感知等机制的研究极为困难.fMRI由于具有相对高的时间和空间分辨率,并可以无创地、重复地观测大脑任何部位的神经活动而被广泛应用于神经科学的研究.fMRI在嗅觉系统的应用使我们对人的嗅觉高级中枢感知机制方面的研究取得了一定的进展,而嗅球为嗅觉信息编码和处理中心,由于其尺寸和人体MRI空间分辨率的限制,对人OB中编码机制的研究一直无法进行.  相似文献   

11.
嗅觉受体基因的研究进展   总被引:2,自引:0,他引:2  
高一龙  缪勤  张汇东  温海  秦海斌  谢庄 《遗传》2010,32(1):17-24
嗅觉在动物的生命活动中起着重要的作用, 与嗅觉相关的基因主要是嗅觉受体(Olfactory receptor, OR)基因。文章介绍了嗅觉受体基因的结构、表达调控、分布、分子进化及其多态性研究进展, 并讨论了该基因与嗅觉功能和嗅觉障碍的关系。  相似文献   

12.
昆虫嗅觉神经的计算机三维重建   总被引:3,自引:2,他引:1  
基于激光扫描共聚焦显微镜平台的计算机三维重建在昆虫嗅觉神经研究中发挥了重要作用。对经荧光标记的神经组织采集系列光学切片并进行三维重建,在双翅目、鳞翅目、膜翅目、蜚蠊目昆虫中均有进展。触角叶是昆虫的初级嗅觉中心,触角叶的解剖学图谱是识别不同种和雌雄虫间嗅球体特定功能的先决条件。了解构成嗅觉传输途径的主要神经元的形态和空间关系是理解气味信息在中枢神经系统编码的基础。三维重建昆虫的嗅觉神经,对于探讨昆虫嗅觉在其寄主选择、觅食以及寻找配偶等行为中的作用具有非常重要的意义。  相似文献   

13.
本文较全面地阐述了嗅觉的一般生理特征、嗅感受器的组织结构、嗅觉传导通路、嗅觉中枢、嗅觉产生的机制和目前研究嗅觉的进展。  相似文献   

14.
饥饿对鱼类的影响   总被引:5,自引:0,他引:5  
在自然界以及人工养殖中,鱼类会经常遇到缺少食物的情况,不同种类的鱼对饥饿的耐受力和适应性特征不同。研究饥饿对鱼类的影响有助于了解鱼类适应饥饿的生态对策,对鱼类自然资源的保护、苗种培育、水产养殖等方面提供理论指导。综述了饥饿对鱼类生长、存活、形态、行为以及补偿生长等方面的研究进展。  相似文献   

15.
多斑岭鳅(Oreonectes polystigmus)是营洞穴生活的鱼类,嗅觉器官在其生活中发挥了重要作用。本文对保藏于中国科学院动物研究所鱼类标本馆的4尾多斑岭鳅标本进行解剖,利用扫描电镜观察多斑岭鳅嗅囊上皮超微结构,以期了解嗅觉器官适应洞穴黑暗环境而产生的形态适应。多斑岭鳅的嗅囊呈椭圆型,嗅囊长径平均为2.27 mm,嗅囊长径与眼径比平均为1.36,揭示其为"嗅觉"鱼类。其嗅轴为直线型,嗅囊腔内对称紧密排列2排嗅板,嗅板数为22~24个。单个嗅板呈卜状亚型,舌状突起较发达。观察发现,非感觉纤毛连续广布在嗅板各个部位,但在嗅板近嗅轴处较少,此处裸露的表皮多褶皱,其上分布很多细微小孔。感觉纤毛主要分布于非感觉纤毛分布较稀疏的地方。上皮表面微绒毛多,一般在非感觉纤毛下,前后两端嗅板上的微绒毛数量相对较少。多斑岭鳅嗅囊水动力机制应属嗅上皮纤毛运动机制。嗅孔分布不均,中间嗅板上的嗅孔较嗅轴前、后分布的嗅板为多,同一嗅板上近嗅轴处的嗅孔最多。由于纤毛分布不均,嗅上皮可分为裸露区和非裸露区,一般裸露区和非裸露区边界清晰,嗅轴上非感觉纤毛和微绒毛主要分布在非裸露区的凹槽里。嗅轴和嗅板近嗅轴处裸露区面积较大,嗅轴裸露区上皮被一系列的连续的微脊切割成多边形,多边形内具有许多隆起与小孔。嗅轴处正是嗅囊中水流回流的区域,为感受水中气味的重要位置,推测与洞穴生活的习性有密切关系。多斑岭鳅嗅囊形态属于G型,这类鱼类其嗅觉功能在鱼类生命活动中发挥了重要作用。同近缘的地表种相比,多斑岭鳅具有较多的嗅板数目、较多数量感觉纤毛和微绒毛,且其嗅囊长径与眼球径比值大于1,这些都揭示了其为"嗅觉"鱼类,表现出了对洞穴黑暗环境的适应。  相似文献   

16.
蚊虫搜寻吸血寄主和产卵行为的调节因子及相关嗅觉机理   总被引:1,自引:0,他引:1  
杜永均  吴仲南 《昆虫学报》2007,50(10):1060-1069
嗅觉在蚊虫的吸血寄主搜寻、产卵和糖源搜寻行为中起决定作用,而在交配行为中的作用并不清楚。本文系统全面地综述了近20年来蚊虫化学生态学和嗅觉识别的分子机理的研究。蚊虫的触角、下颚须和口喙上的嗅觉感器感觉环境中释放的各种挥发性化合物。气味分子与嗅觉气味结合蛋白和气味受体的结合所启动的一系列生化反应产生神经动作电位。蚊虫嗅觉神经元编码气味中化合物的组成、浓度及其暂时瞬间的浓度变化和空间分布。吸血前后神经元的活性在数量和质量上有变化,反映了蚊虫在搜寻吸血寄主和产卵行为上的调节。在吸血寄主搜寻中,人体和动物释放的二氧化碳、乳酸以及其他气味协同引诱蚊虫向目标气味源定向飞行,最后找到吸血寄主。而成熟产卵雌蚊是利用产卵场所释放的腐烂气味寻找适宜的产卵场所,一些蚊虫卵、幼虫或蛹分泌的产卵信息素引诱和刺激雌蚊产卵,并与产卵生境气味起协同作用。植物气味尤其是花香味引诱蚊虫找到蜜源。驱避剂也是直接或间接通过嗅觉起作用,一些驱蚊剂由于阻断嗅觉反应而抑制蚊虫的定向飞行。从植物、动物或人体以及产卵场所释放的气味中有望找到有效的引诱和驱避化合物。对蚊虫嗅觉识别机理的认识将使我们开发出有效的蚊虫诱捕技术,进而应用于种群监测和控制。  相似文献   

17.
正神捕档案官方大名:白头海雕江湖别称:美洲雕、美洲鹰居住地:加拿大、美国全境以及墨西哥北部。江湖印象:大型猛禽;飞行能手;美国国鸟。猎物范围:各种鱼类、体形比自身小的鸟类、啮齿类动物及腐肉。捕猎装备:敏锐的视觉和嗅觉;尖利的钩状喙;长而弯曲的锋利趾爪。必杀技:高速飞翔,猛然出击,用锋利的钩爪深深地刺入猎物要害部位。特异功能:可在携带猎物的同时快速飞行;所筑巢为北美鸟类中最大的巢穴。  相似文献   

18.
昆虫嗅觉可塑性研究进展   总被引:1,自引:0,他引:1  
嗅觉是昆虫的主要感觉模式,在昆虫的重要行为活动如寻找配偶、定位寄主、选择产卵场所等中起着关键作用。昆虫通过触角等外周嗅觉器官感受外界的化学信号并转化为电信号,电信号传输到中枢神经系统进行加工整合,最后通过大脑发出指令调控自身关键的行为。昆虫需要在合适的时机对不同气味作出反应,从而保证其能够在不同生理状态下完成特定的行为。这就要求昆虫的嗅觉系统具有可塑性,即根据不同的生理状态,如日龄、取食状态、交配、节律等对相同气味作出不同的反应。本文综述了不同生理状态对昆虫嗅觉行为和嗅觉神经系统的影响,以及昆虫嗅觉可塑性产生的机制,为加深和扩展人们对昆虫嗅觉系统的认识和建立新的害虫防控策略提供参考。  相似文献   

19.
目的探讨阿尔茨海默病转基因小鼠极早期嗅觉工作记忆损害特征。方法选用5周龄雄性5XFAD转基因及野生型小鼠各9只,9周龄雄性5XFAD转基因与野生型小鼠各8只,采用嗅觉广度测验进行测试,以嗅觉广度、气味辨别错误数和准确率评估嗅觉工作记忆能力。结果与同龄野生型小鼠相比,9周龄转基因小鼠嗅觉广度明显降低(P0.05),错误次数明显增高(P0.05),气味辨别准确率显著降低(P0.05)。此外,与5周龄转基因小鼠相比,9周龄转基因小鼠嗅觉广度明显降低(P0.05)。而5周龄5XFAD小鼠的嗅觉广度、错误次数以及气味辨别准确率与野生型之间差异无显著性(P0.05)。结论 9周龄5XFAD转基因小鼠出现显著嗅觉工作记忆损害,提示嗅觉工作记忆损害可能是AD小鼠模型极早期认知损害的敏感指标。  相似文献   

20.
蚊虫主要依赖嗅觉系统与外界环境进行化学信息交流。蚊虫通过嗅觉感受系统寻找食物、 配偶和产卵场所, 进而做出相应的行为反应。本文综述了近年来蚊虫嗅觉系统对气味信号神经传导机制的研究进展。蚊虫的嗅觉感器主要位于触角和下颚须, 触角上的毛形感器和锥形感器感受氨水、 乳酸、 羧酸类化合物等人体和其他动物释放的微量气味物质, 下颚须上的锥形感器则感受呼出的二氧化碳以及一些其他的挥发性物质; 蚊虫嗅觉感器内部有受体神经细胞, 其上分布有嗅觉受体蛋白, 蚊虫对外界环境的化学感受就是通过气味物质与这些受体蛋白互作而得以实现; 根据对不同气味物质的反应谱差异, 嗅觉神经细胞被分为不同的功能类型; 来自嗅觉神经细胞的神经信号进一步从外周传导至中枢神经中脑触角叶内的神经小球, 在此对信息进行初步的处理, 通过评估嗅觉神经细胞的反应和触角叶内的神经小球相应被激活的区域, 不同小球被分别命名; 最后, 神经信号继续整合, 由投射神经传向前脑, 最终引发一系列昆虫行为反应。这些研究从理论上剖析了气味信号在蚊虫嗅觉系统中的神经转导通路, 对于我们深刻理解蚊虫的嗅觉系统具有重要意义, 同时也有助于进一步理解其他昆虫甚至人类的气味识别机制及进行更深层次神经科学的探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号