首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大鼠衰老过程中脑细胞DNA与c—Ha—ras原癌基因的甲基化   总被引:3,自引:0,他引:3  
用Msp I/HpaⅡ酶解电泳法和高效液相色谱(HPLC)两种方法进行比较,研究了不同年龄大鼠的肝、脑细胞基因组DNA的甲基化程度。从酶解电泳图谱可观察到,肝、脑细胞基因组DNA甲基化在青年鼠和老年鼠之间没有差异。但用具有高分辨率的高效液相色谱测量DNA中5-mC的含量时发现,老年鼠脑细胞DNA甲基化程度较青年鼠的下降62%,而肝细胞DNA甲基化程度在老年鼠与青年鼠之间并没有显著差异。这此结果提示  相似文献   

2.
随着基因组计划的深入进行 ,对DNA的分析技术提出了更高要求。目前分离和分析DNA片段的标准方法是聚丙烯酰胺和琼脂糖凝胶电泳 ,这种现代电泳技术仍然是一个繁琐冗长的程序 ,不易自动化 ,难于提高分析效率。而且 ,用于检测DNA序列变异的基于凝胶的方法 ,其重复性和精密度都不理想。最近 ,出现了一种自动化的可用于检查DNA序列改变和DNA片段分析的工具 ,其名称为转基因组WAVEDNA片段分析系统。这个系统是第一个商用的DNA序列变异检测和DNA片段分析的自动化技术。其特点是高通量筛选单核苷酸多态 (SNP)和短串…  相似文献   

3.
一种动物基因组DNA提取方法的改进   总被引:66,自引:2,他引:64  
介绍一种动物基因组DNA提取方法。该方法具有简便、快速、实用的特点,所获得的DNA数量和质量都很高,可用于各种分子生物学实验。  相似文献   

4.
将鹅源腺病毒Y81G4株全基因组DNA的HindⅢ酶切片段分别插入质粒pUC18,成功构建了全基因组DNA文库。在此基础上,将重组质粒携带的插入片段切出、回收并分别用地高辛标记后作为探针,与经限制酶BamHⅠ、EcoRⅠ、PstⅠ、EcoRⅤ消化的病毒基因组DNA进行Southern Blotting,杂交结果经比较综合后获得了该病毒基因组DNA的HindⅢ、BamHⅠ、EcoRⅠ、PstⅠ、Ec  相似文献   

5.
在 2 0 0 0年 1 2月 1 4日英国出版的NATURE杂志上 (Vol.4 0 8:796~ 81 5) ,发表了植物分子遗传研究的模式开花植物拟南芥 1 1 5.4Mb的全序列图谱 ,原文的中文译名为“开花植物拟南芥的基因组序列分析”。拟南芥DNA全长 1 2 5Mb ,只剩下 1 0Mb的中心着丝区DNA ,因为多重复序列所含基因很少 ,还未全测出。拟南芥全基因组DNA包含 2 5498个功能基因组及其所对应的 1 1 0 0 0个蛋白质家族。这是人类首次全部破译出一种高等植物的全基因序列 ,是在分子水平上向植物生命奥秘探索的又一里程碑式的工作。拟南芥植物基因组…  相似文献   

6.
用于微生物分型的现代技术包括表型和基因型方法。随机扩增多态性DNA是在聚合酶链反应技术基础上发展起来的一种新的基因分型法。主要特点是利用随机寡核苷酸引物扩增基因组DNA片段,进而通过凝胶电泳分析其指纹图特征,借以显示不同菌株间存在细微差别。这种方法简单,快速,现已在许多微生物分型中得到运用。  相似文献   

7.
DNA序列信息的一种新的测度   总被引:4,自引:3,他引:1  
根据信息理论给出了测度DNA序列信息的一种新的方法,获得DNA序列4个层次的信息量测度:Ib,If(1),If(2)andIf(3),这4种信息测度可分别用来测度DNA的碱基序列、密码子序列、编码蛋白质序列和功能蛋白质序列的信息量。从M.edulis的线粒体基因组中两个较短的编码蛋白质的DNA序列和使用具有不同倍性的间并密码子组组成的模拟DNA序列中所获得计算结果表明,这些信息测度确实能用来揭示所  相似文献   

8.
真核生物的DNA甲基转移酶与DNA甲基化   总被引:1,自引:0,他引:1  
真核生物的DNA甲基化就是在DNA的CpG二核苷酸胞嘧啶的第 5位碳原子上加上甲基 ,催化这一过程的是DNA甲基转移酶 (Dnmt)。DNA的甲基化修饰参与基因表达调控、胚胎发育、细胞分化、基因组印迹、X染色体灭活和细胞记忆等诸多重要生物学过程[1,2 ] 。在不同组织或同一类型细胞的不同发育阶段 ,基因组DNA上各CpG位点甲基化状态的差异即构成基因组的DNA甲基化谱。根据催化反应类型。可以将DNA甲基转移酶分为三类 :第一类将腺嘌呤转化成N6 甲基腺嘌呤 ;第二类将胞嘧啶转化成N4 甲基胞嘧啶 ;第三类将胞嘧啶转化成…  相似文献   

9.
一种粗糙脉孢霉基因组DNA的快速制备方法   总被引:5,自引:1,他引:4  
粗糙脉孢霉基因组DNA的制备方法一般很费工费时。WendlandJA等人发展了一种丝状真菌的DNA提取方法 ,应用在裂褶菌取得了良好的效果[1] 。本文基于该方法制备粗糙脉孢霉基因组DNA也取得了成功 ,应用PCR从基因组扩增出了一个与无机焦磷酸酶有同源性的基因。1 材料与方法1 1 菌种 :粗糙脉孢霉 (Neurosporacrassa)菌种 490 7prd - 4 ,bdA ,来自FungalGeneticsstockcenter,UniversityofKansasMedicalCenter,Kansas ,USA。1 2…  相似文献   

10.
酵母基因组DNA的两个简易制备方法   总被引:4,自引:0,他引:4  
酵母基因组DNA的制备一般需要制作原生质体。我们基于丝状真菌的方法[1,2 ] 发展了 2个酵母基因组DNA的制备程序 ,取得了良好的效果。1 材料与方法1.1 材料菌种 野生酿酒酵母菌种G1M 2 34为本中心周惠副教授惠赠。1.2 方法1.2 .1 酵母基因组DNA制备方法 ①方法 1:接种酵母菌种于无菌的 5 0mLYPD或SD培养基 ,在30℃生长至对数生长晚期。滤液 4 0 0 0r/min离心10min。菌体用液氮碾磨破壁。加 7mLDNA缓冲液 (10 0mmol/LTris HCl,pH 8.0 ,10mmol/LED TA ,1%SDS)。混匀 ,6 5℃保…  相似文献   

11.
A distinctive feature of closed circular DNA molecules is their particular topological state, which cannot be altered by any conformational rearrangement short of breaking at least one strand. This topological constraint opens unique possibilities for experimental studies of the distributions of topological states created in different ways. Primarily, the equilibrium distributions of topological properties are considered in the review. It is described how such distributions can be obtained and measured experimentally, and how they can be computed. Comparison of the calculated and measured equilibrium distributions over the linking number of complementary strands, equilibrium fractions of knots and links formed by circular molecules has provided much valuable information about the properties of the double helix. Study of the steady-state fraction of knots and links created by type II DNA topoisomerases has revealed a surprising property of the enzymes: their ability to reduce these fractions considerably below the equilibrium level.  相似文献   

12.
The maintenance of DNA methylation in nascent DNA is a critical event for numerous biological processes. Following DNA replication, DNMT1 is the key enzyme that strictly copies the methylation pattern from the parental strand to the nascent DNA. However, the mechanism underlying this highly specific event is not thoroughly understood. In this study, we identified topoisomerase IIα (TopoIIα) as a novel regulator of the maintenance DNA methylation. UHRF1, a protein important for global DNA methylation, interacts with TopoIIα and regulates its localization to hemimethylated DNA. TopoIIα decatenates the hemimethylated DNA following replication, which might facilitate the methylation of the nascent strand by DNMT1. Inhibiting this activity impairs DNA methylation at multiple genomic loci. We have uncovered a novel mechanism during the maintenance of DNA methylation.  相似文献   

13.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.  相似文献   

14.
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.  相似文献   

15.
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis.  相似文献   

16.
Metnase (or SETMAR) arose from a chimeric fusion of the Hsmar1 transposase downstream of a protein methylase in anthropoid primates. Although the Metnase transposase domain has been largely conserved, its catalytic motif (DDN) differs from the DDD motif of related transposases, which may be important for its role as a DNA repair factor and its enzymatic activities. Here, we show that substitution of DDN610 with either DDD610 or DDE610 significantly reduced in vivo functions of Metnase in NHEJ repair and accelerated restart of replication forks. We next tested whether the DDD or DDE mutants cleave single-strand extensions and flaps in partial duplex DNA and pseudo-Tyr structures that mimic stalled replication forks. Neither substrate is cleaved by the DDD or DDE mutant, under the conditions where wild-type Metnase effectively cleaves ssDNA overhangs. We then characterized the ssDNA-binding activity of the Metnase transposase domain and found that the catalytic domain binds ssDNA but not dsDNA, whereas dsDNA binding activity resides in the helix-turn-helix DNA binding domain. Substitution of Asn-610 with either Asp or Glu within the transposase domain significantly reduces ssDNA binding activity. Collectively, our results suggest that a single mutation DDN610 → DDD610, which restores the ancestral catalytic site, results in loss of function in Metnase.  相似文献   

17.
18.
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.  相似文献   

19.
A preparative procedure for the large-scale isolation of plasmid DNA without the use of RNAse is described. Crude plasmid DNA is prepared using a standard boiling method. High-molecular-weight RNA is removed by precipitation with LiCl, and low-molecular-weight RNA is removed by sedimentation through high-salt solution. The procedure is inexpensive, rapid, simple, and particularly suitable for processing several large-scale preparations simultaneously. A similar procedure has been developed for preparation of lambda-phage DNA.  相似文献   

20.
The persistence length of DNA, a, depends both on the intrinsic curvature of the double helix and on the thermal fluctuations of the angles between adjacent base-pairs. We have evaluated two contributions to the value of a by comparing measured values of a for DNA containing a generic sequence and for an "intrinsically straight" DNA. In each 10 bp segment of the intrinsically straight DNA an initial sequence of five bases is repeated in the sequence of the second five bases, so any bends in the first half of the segment are compensated by bends in the opposite direction in the second half. The value of a for the latter DNA depends, to a good approximation, on thermal fluctuations only; there is no intrinsic curvature. The values of a were obtained from measurements of the cyclization efficiency for short DNA fragments, about 200 bp in length. This method determines the persistence length of DNA with exceptional accuracy, due to the very strong dependence of the cyclization efficiency of short fragments on the value of a. We find that the values of a for the two types of DNA fragment are very close and conclude that the contribution of the intrinsic curvature to a is at least 20 times smaller than the contribution of thermal fluctuations. The relationship between this result and the angles between adjacent base-pairs, which specify the intrinsic curvature, is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号