首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为研究Ca2+在水杨酸诱导丹参幼苗丹酚酸B生物合成过程中的作用,分别用激光共聚焦显微镜和高效液相色谱仪检测胞外Ca2+通道抑制剂Vp和LaCl3,胞内Ca2+通道抑制剂LiCl以及胞内钙调素拮抗剂TFP处理前、后水杨酸诱导丹参叶片保卫细胞内Ca2+荧光强度和丹酚酸B含量的变化。结果表明,水杨酸 (SA) 处理后6 min即可诱发丹参幼苗叶片保卫细胞内Ca2+迸发,持续时间为2~3 min,丹参幼苗丹酚酸B生物合成量亦显著增加,且丹酚酸B合成量的增加发生在Ca2+迸发之后。胞外Ca2+通道抑制剂,胞内Ca2+通道抑制剂以及胞内钙调素拮抗剂均可抑制水杨酸诱导的Ca2+迸发和丹酚酸B的生物合成。结果表明水杨酸诱发的Ca2+对丹参幼苗丹酚酸B生物合成具有重要的调控作用。  相似文献   

2.
水杨酸(salicylic acid,SA)处理可诱导丹参悬浮培养细胞内H2O2产生及其培养基碱化。利用NADPH氧化酶抑制剂咪唑(imidazole,IMD)、H2O2淬灭剂二甲基硫脲(dimethylthiourea,DMTU)、质膜H+-ATPase抑制剂钒酸钠(Na3VO4)及激活剂壳梭孢菌素(fusicoccin,FC)处理丹参悬浮培养细胞,探讨SA诱导的H2O2迸发与培养基碱化之间的关系。结果表明,H2O2可促发培养基碱化,IMD和DMTU抑制SA诱发的培养基碱化,说明H2O2参与SA诱发的培养基碱化过程;SA抑制质膜H+-ATPase活性,Na3VO4引发培养基碱化并使H2O2迸发时间提前,FC处理逆转了SA诱导的培养基碱化及H2O2迸发,说明质膜H+-ATPase调控培养基pH值变化,培养基碱化促进了H2O2产生。因此,丹参悬浮培养细胞内H2O2水平与其培养基碱化程度之间相互关联、共同作用,协同响应SA的诱导。  相似文献   

3.
探究了外界Ca2+(0~50 mmol/L)对丹参培养细胞迷迭香酸合成及其相关酶活性的影响,并利用细胞膜钙离子通道抑制剂异搏定(Verpamil,VP)及钙离子载体A23187初步探讨了外界Ca2+浓度变化影响丹参培养细胞次生代谢的机制。结果显示:培养6 d时的丹参细胞中迷迭香酸积累量与外界Ca2+浓度显著相关,其中10 mmol/L Ca2+最有利于迷迭香酸的合成,迷迭香酸最大积累量达20.149 mg/g DW,比1 mmol/L和3 mmol/LCa2+处理分别高37.3%和20.4%。分析迷迭香酸合成的两条支路上的关键酶PAL和TAT活性变化发现,两种酶活性亦受外界Ca2+浓度影响,且活性变化先于迷迭香酸的积累,说明这两种酶均参与迷迭香酸的生物合成,但PAL比TAT促进作用更明显。进一步用VP和A23187处理发现,外界Ca2+影响迷迭香酸的合成是通过影响胞内Ca2+浓度实现的,胞外Ca2+内流可能参与了这一过程。  相似文献   

4.
以番茄‘L402’品种幼苗为试材,经水杨酸(SA)诱导处理后接种灰霉病菌,再进行外源Ca2+、Ca2+螯合剂和Ca2+抑制剂处理,分析Ca2+和SA处理番茄叶片对灰霉病抗性和主要防御酶系活性的变化,探讨Ca2+和SA对番茄诱导抗病性的影响。结果显示:(1)外源SA可显著提高番茄诱导叶和非诱导叶抗灰霉病能力,Ca2+能进一步增强SA诱导的抗病能力;而Ca2+螯合剂EGTA和质膜钙通道抑制剂LaCl3则不同程度地抑制了SA诱导的番茄灰霉病抗性。(2)外源SA能提高番茄诱导叶和非诱导叶中苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、过氧化物酶(POD)活性,外源Ca2+亦进一步增强了SA诱导的上述防御酶活性,但缺钙处理则不同程度降低这些防御酶活性。(3)外源补充Ca2+及不同缺钙处理对SA诱导的过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性未发现规律性影响。研究表明,钙对SA诱导番茄抗灰霉病性的增强效应,可能与其提高SA诱导番茄叶片中PAL、PPO和POD等防御酶活性有关。  相似文献   

5.
以野生型和hy4突变体拟南芥为材料,运用药物学方法研究可能参与蓝光诱导叶片花色素苷积累和CHS基因表达的信号组分。培养基中外施Ca2 、钙离子通道剂A23187、螯合剂EGTA、钙通道阻断剂尼群地平(nifedipine,Nif)以及异博定(verapermil)的实验证实,蓝光诱导13d龄叶片花色素苷积累和CHS基因表达需要胞外Ca2 的参与,而蓝光作用是由cry1(cryptochrome1)介导的。此外,质膜黄素蛋白抑制剂DPI(diphenylene iodonium)抑制蓝光诱导的花色素苷积累,质膜H -ATPase激活剂壳梭胞素(fusicoccin,FC)抑制蓝光反应,而抑制剂钒酸钠则起促进作用。CaM拮抗剂W7、Ca2 -ATPase抑制剂EB(erythrosine B)、G蛋白激活剂霍乱霉素(cholera toxin,CTX)以及抑制剂百日咳毒素(pertussis toxin,PTX)对蓝光下野生型与hy4的花色素苷积累都有影响。对药物实验的分析表明,质膜氧化还原系统、H -ATPase可能参与依赖于外源Ca2 的蓝光反应。  相似文献   

6.
N-酰基高丝氨酸内酯(AHLs)是革兰氏阴性细菌群体感应系统(QS)中的胞间通讯信号分子。近年的研究表明AHLs可以调控植物生长发育及防卫反应,但其调控机制尚不清楚。本研究以拟南芥为材料,采用3-羰基辛酰基高丝氨酸内酯(3OC8-HSL)处理转水母发光蛋白基因的拟南芥幼根细胞,利用冷光仪检测3OC8-HSL对拟南芥根细胞中胞质游离Ca2+浓度([Ca2+]cyt)变化的影响,同时采用Ca2+专一性螯合剂EGTA和Ca2+通道抑制剂预处理转基因拟南芥根细胞,用全细胞膜片钳技术分析3OC8-HSL诱导拟南芥根细胞中[Ca2+]cyt升高的Ca2+来源。结果表明,3OC8-HSL可诱导拟南芥根细胞中[Ca2+]cyt瞬时升高。这种诱导效应可被EGTA、异搏定(verapamil)、LaCl3所抑制,但LiCl预处理对这种诱导效应无影响。膜片钳分析结果显示,3OC8-HSL可激活质膜Ca2+通道,增加胞外Ca2+内流。说明细菌AHLs可诱导植物Ca2+信号产生,且这种Ca2+信号主要源于胞外Ca2+内流,暗示Ca2+信使系统参与植物对细菌QS信号的响应。  相似文献   

7.
应用激光共聚焦显微镜和全细胞膜片钳技术研究了微丝骨架解聚剂细胞松弛素B(CB)和稳定剂鬼笔环肽(PD)对梨花粉管细胞内钙离子浓度动态变化和尖端质膜上钙离子通道的影响。结果显示:CB处理能促进花粉管内胞质钙离子[Ca2+]i浓度增加,同时还能激活质膜上的钙离子通道;而PD处理对花粉管内[Ca2+]i浓度及钙离子通道几乎没有影响。研究表明,微丝骨架的解聚激活了花粉管质膜上的钙离子通道,使得胞外钙离子大量流入,胞内钙离子浓度升高,从而抑制花粉管生长。  相似文献   

8.
以小麦叶肉细胞原生质体-激发子互作为研究体系,借助共聚焦激光扫描显微镜观察结合药物学试验,对激发子刺激后不同抗叶锈性小麦品种原生质体[Ca2+]cyt的动态变化和[Ca2+]cyt升高的钙来源进行了研究。结果表明:抗叶锈小麦品种‘洛夫林10’的原生质体在激发子处理后,[Ca2+]cyt明显升高,随后有所下降,但在试验检测时间范围内仍保持较高浓度水平;而感病品种‘郑州5389’经激发子处理后,[Ca2+]cyt只发生轻微的波动。使用质膜钙通道抑制剂抑制胞外钙离子流入胞内,再经激发子处理,原生质体[Ca2+]cyt虽也有升高,但升高幅度大大降低。这一结果表明,激发子刺激诱发的[Ca2+]cyt升高主要源于胞外钙离子内流。  相似文献   

9.
以小麦叶肉细胞原生质体-激发子互作为研究体系,借助共聚焦激光扫描显微镜观察结合药物学试验,对激发子刺激后不同抗叶锈性小麦品种原生质体[Ca2+]cyt的动态变化和[Ca2+]cyt升高的钙来源进行了研究。结果表明:抗叶锈小麦品种‘洛夫林10’的原生质体在激发子处理后,[Ca2+]cyt明显升高,随后有所下降,但在试验检测时间范围内仍保持较高浓度水平;而感病品种‘郑州5389’经激发子处理后,[Ca2+]cyt只发生轻微的波动。使用质膜钙通道抑制剂抑制胞外钙离子流入胞内,再经激发子处理,原生质体[Ca2+]cyt虽也有升高,但升高幅度大大降低。这一结果表明,激发子刺激诱发的[Ca2+]cyt升高主要源于胞外钙离子内流。  相似文献   

10.
高海波  张淑静  沈应柏 《生态学报》2012,32(20):6520-6526
植物对昆虫取食活动进行成功防御的关键,取决于对昆虫口腔反吐物的激发子的快速识别。实验利用无损伤微测系统及激光共聚焦显微镜,研究了沙冬青细胞经灰斑古毒蛾口腔反吐物诱导后Ca2+流及H2O2的变化。结果发现:灰斑古毒蛾口腔反吐物诱导沙冬青细胞Ca2+内流及H2O2的积累,表明Ca2+内流及H2O2的积累是沙冬青细胞对口腔反吐物产生应答的早期响应事件;Ca2+钙通道阻断剂仅部分抑制Ca2+内流,说明Ca2+内流除经过质膜上的Ca2+通道进入细胞外,尚存在其他的内流途径;灰斑古毒蛾口腔反吐物中的某些成分与沙冬青细胞的质膜结合后,诱导质膜上形成允许Ca2+通过的孔道,而GdCl3不能抑制这类孔道的活性。胞外Ca2+螯合剂EGTA完全抑制H2O2的积累,GdCl3预处理仅部分抑制了H2O2的积累,说明灰斑古毒蛾诱导的沙冬青细胞内H2O2的积累依赖于Ca2+内流;抑制剂实验表明,H2O2的积累主要来源于质膜上NADPH氧化酶的作用。  相似文献   

11.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

12.
外源IAA 处理可以显著增加小麦胚芽鞘细胞NAD 激酶的催化活性,钙离子可以增强IAA 的作用效果,而钙离子通道抑制剂LaCl3 则起强烈的抑制作用,但在存在钙离子的条件下,这种抑制作用可以被钙离子载体A23187 消除;钙调蛋白能够在离体条件下激活经过DEAE 纤维素柱纯化的小麦胚芽鞘NAD激酶,经过IAA 处理的胚芽鞘细胞中能够刺激NAD 激酶活性的钙调蛋白含量明显增加,IAA 的这一作用受LaCl3 的抑制。上述结果表明Ca2+ /CaM 复合物介导了生长素对小麦胚芽鞘细胞NAD 激酶活性的促进作用。  相似文献   

13.
Shoot elongation of arrowhead (Sagittaria pygmaea Miq.) tubers was stimulated in anaerobic conditions. The anaerobic elongation was attributed to stimulation of cell elongation in the middle of the shoots. The anaerobic elongation of the shoots was severely inhibited by ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). The EGTA inhibition was completely nullified by exogenous CaCl2, which acts as an enhancer of anaerobic elongation. Moreover, calcium channel blockers, verapamil, diltiazem and LaCl3, inhibited the anaerobic elongation enhanced by CaCl2. These results showed that calcium plays an important role in stimulating the elongation in anaerobic conditions. Incorporation of 45Ca into the shoot tissues was measured to determine the involvement of calcium uptake in anaerobic elongation. Incorporation of 45Ca into the cell sap, which was collected from frozen and thawed shoots after thorough washing with LaCl3, was significantly stimulated in anaerobic conditions. Verapamil and diltiazem prevented the stimulation of 45Ca incorporation in anaerobic conditions. These results suggest that calcium uptake from the medium serves to enhance shoot elongation of arrowhead tubers under anaerobic conditions.  相似文献   

14.
This study investigated fluctuations of cytosolic pH (pHi) of cultured rat vascular smooth muscle cells (VSMCs) in reaction to metabolic alterations induced by angiotensin II (AII). Serially passed VSMCs from Wistar rat aortae were grown on coverslips and loaded with the pH-sensitive fluorescent indicator 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. A biphasic reaction was seen after exposure of these cells to AII (1 nM to 1 microM); an initial and relatively brief phase of acidification was followed by sustained alkalinization. The rate of acidification and magnitude of alkalinization were dose-dependent. This biphasic effect of AII was also demonstrated in Ca2+-free medium and was mimicked by subjecting VSMCs to the calcium ionophore A23187 (5 microM) in Ca2+-containing medium but not in Ca2+-free medium. Verapamil (10 microM) almost entirely eliminated the AII-induced acidification, whereas amiloride analogues 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride (100 microM) as well as Na+-deficient medium abolished the subsequent (alkalinization) phase produced by the hormone. Activation of the Na+/H+ antiport by subjecting VSMCs to phorbol 12-myristate 13-acetate (100 nM) prevented a subsequent effect of AII on the pHi profile. This resistance to a further action of the hormone was not mediated via cytoplasmic alkalinization. AII produced a dramatic redistribution in the cellular compartments of 45Ca2+ associated with accelerated 45Ca2+ washout. These findings suggest that the AII-induced acidification phase may relate to activation of the Ca2+ pump (Ca2+/H+ exchange) and that this process can take place in the presence and absence of extracellular Ca2+. The alkalinization phase is the consequence of stimulation of the Na+/H+ antiport, which in cultured VSMCs can be activated by a rise in cytosolic free Ca2+ as well as other mechanisms.  相似文献   

15.
HarpinPss can induce hypersensitive reaction (HR) in tobacco leaves. As superoxide dismutase can inhibit but catalase can not inhibit the development of HR induced by harpinPss, superoxide anion is required for this response. HarpinPss can also induce the release of active oxygen and extracellular alkalinization, two early defence responses in tobacco suspension culture. Diphenylene iodoium, can completely inhibit the induction of HR in tobacco leaves, and the release of active oxygen in the suspension culture system, superoxide anion in these system may be produced by the activation of NADPH oxidase. Ethyleneglycol-bis (beta-aminoethyl) N, N, N'N'-tetraacetic acid (EGTA) can inhibit the development of harpinPss-induced HR and these two early defence responses in suspension culture system. Adding Ca2+ into the medium again, these responses can return to normal level in a short time. Lanthanum chloride, verapamil, neomycin, U-73122, and LiCl can also inhibit these harpinPss-induced responses. Therefore, the influx of Ca2+ mediated by calcium channel and the release of Ca2+ from internal Ca2+ pool may be involved in the two early defense responses induced by harpinPss. Cycloheximide and actinomycin D have no effect on the release of active oxygen but can inhibit harpinPss-induced HR even added them in the intermediate process for inducing HR. It indicates superoxide is just a trigger for HR, and HR is a more complex process that needs the sustained expression of some genes.  相似文献   

16.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

17.
Tuberization response of single-node leaf cuttings from induced potato plants (Solanum tuberosum L.) was reversed when pretreated with 5 millimolar ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) + 50 micromolar calcium ionophore (A23187) and resumed when transferred to a CaCl(2)-containing medium. Tuberization was inhibited by LaCl(3), chlorpromazine, and trifluoperazine at 5 to 10 micromolar. These results suggest a role for calcium in the tuberization process.  相似文献   

18.
We have demonstrated previously that pretreatment of GH3 pituitary cells with muscarinic agonists may induce a higher cAMP formation in response to vasoactive intestinal peptide (VIP) or forskolin. In the present study, we further examined the adenylate cyclase (AC) that may be involved. We found that carbachol-pretreatment enhanced both VIP- and forskolin-activated AC activities. The addition of calcium ions to the incubation buffer diminished this enhancing effect. Carbachol was found to induce a decrease in intracellular calcium concentration [Ca2+]i by inhibiting calcium influx through L-type Ca2+ channels. However, the incubation of cells in Ca(2+)-free buffer or in the presence of L-type Ca2+ channel blockers had no influence on forskolin-stimulated cAMP formation, although both treatments induced decreases in [Ca2+]i as carbachol did. On the other hand, incubation in the presence of LaCl3 at a low concentration not being able to enter cells, forskolin-stimulated cAMP formation as well as the enhancing effect of carbachol-pretreatment on this response, were both suppressed. Similar phenomena were observed when membrane-bound AC activities were measured in the presence of LaCl3. Taken together, these results seem to suggest that pretreatment of GH3 cells with muscarinic receptor agonist may activate a Ca(2+)-inhibitable AC for a higher stimulated response. Low intracellular calcium concentrations are essential but not sufficient for this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号