首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent carbon nanoparticles (CPs), a fascinating class of recently discovered nanocarbons, have been widely known as some of the most promising sensing probes in biological or chemical analysis. In this study, we demonstrate a green synthetic methodology for generating water‐soluble CPs with a quantum yield of approximately 24% via a simple heating process using yum mucilage as a carbon source. The prepared carbon nanoparticles with an ~10 nm size possessed excellent fluorescence properties, and the fluorescence of the CPs was strongly quenched by Fe3+, and recovered by adenosine triphosphate (ATP), thus, an ‘off’ and ‘on’ system can be easily established. This ‘CPs‐Fe3+‐ATP’ strategy was sensitive and selective at detecting ATP with the linear range of 0.5 µmol L?1 to 50 µmol L?1 and with a detection limit of 0.48 µmol L?1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive fluorogenic probe 1 for biothiols was developed based on the Michael addition reaction. The probe 1 was readily synthesized via the reaction of 2‐(4′‐hydroxyphenyl) benzimidazole (HPBI) with acryloyl chloride and shows weak fluorescence emission. Upon mixing with biothiols, the fluorescence of 1 is significantly enhanced due to the conjugate addition of thiols to the α,β‐unsaturated carbonyl moiety, thus eliminating the photoinduced electron transfer (PET) quenching of the fluorophore by the intramolecular carbon–carbon double bond. Cysteine (Cys) was selected as the representative thiol in the spectral experiment. A good linear relationship was obtained from 1.0 to 30.0 µmol L?1 for Cys and the detection limit was 0.17 µmol L?1. Furthermore, probe 1 was highly selective for biothiols without the interference of some biologically relevant analytes and has been applied to detecting biothiols in human urine samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Yttrium‐sensitized fluorescence was used to develop a sensitive and simple spectrofluorimetric method for the determination of sparfloxacin. The method is based on the strong fluorescence of sparfloxacin after adding the fluorescence probe yttrium in buffer solution (pH = 8), and various factors influencing fluorescence were investigated. Under optimum conditions, the enhanced fluorescence intensity of the system showed a good linear relationship with the concentration of sparfloxacin over the range 8 × 10?7 to 1.4 × 10?5 mol L?1 with a correlation coefficient of 0.9997. The detection limit (S/N = 3) was determined as 9.01 × 10?8 mol L?1. The mechanism of the sensitizing effect of probe was discussed. This method has been successfully applied for the determination of sparfloxacin in pharmaceuticals, human urine and serum samples; the result obtained was satisfactory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Based on the fluorescence quenching of Terbium (III)‐sodium hexametaphosphate (Tb/SHMP) chelates in the presence chromate (III), a sensitive fluorimetric method was developed for the determination of trace amounts of chromium (III) in aqueous solutions. Under the optimum conditions, the linear calibration graph was obtained (R = 0.996). The linear range and detection limit of Cr (III) were 7.69 × 10?7 to 1.15 × 10?4 mol L?1 and 4.50 × 10?7 mol L?1, respectively. The proposed method had a wider linear range and was proved to be very sensitive, rapid and simple. The method was applied successfully to the determination of chromium (III) in the synthetic samples and real water samples. Moreover, the reaction mechanism was discussed through the fluorescence lifetime and proved to be dynamic quenching behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and simple method for the determination of enoxacin (ENX) was developed based on the fluorescence quenching effect of ENX for glutathione (GSH)‐capped CdTe quantum dots (QDs). Under optimum conditions, a good linear relationship was obtained from 4.333 × 10?9 mol?L?1 to 1.4 × 10?5 mol?L?1 with a correlation coefficient (R) of 0.9987, and the detection limit (3σ/K) was 1.313 × 10?9 mol?L?1. The corresponding mechanism has been proposed on the basis of electron transfer supported by ultraviolet–visible (UV) light absorption, fluorescence spectroscopy, and the measurement of fluorescence lifetime. The method has been applied to the determination of ENX in pharmaceutical formulations (enoxacin gluconate injections and commercial tablets) with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel, rapid and sensitive spectroflurimetric method was developed and validated for the determination of deferasirox in urine, serum and tablet samples based on sensitization of terbium fluorescence. The excitation and emission wavelengths were 328 and 545 nm, respectively. The optimum conditions for the determination of deferasirox were investigated considering the effects of various parameters. The method was quantitatively evaluated in terms of linearity, recovery, reproducibility and limit of detection. Under the optimal conditions, the fluorescence intensities were linear with the concentration of deferasirox in the range of 5 × 10?9 to 5×10?6 mol L?1, with a detection limit of 1.5 × 10?9 mol L?1 and a relative standard deviation of 1.1–2.3%. Linearity, reproducibility, recovery and limit of detection made the method suitable for determination of deferasirox in urine, serum and tablets samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive and simple spectrofluorimetric method for the determination of tiopronin based on its inhibitory effect on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine was developed. The concentration of tiopronin is linear with decreased fluorescence (ΔF) of the system under the optimal experimental conditions. The calibration graph is linear in the range 1.23 × 10?8 to 3.06 × 10?5 mol L?1 with a detection limit of 6.13 × 10?9 mol L?1. The relative standard deviation was 4.38% for 11 determinations of 6.13 × 10?6 mol L?1. This method can be used for the determination of tiopronin in pharmaceuticals with satisfactory results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We have successfully synthesized gold nanoclusters (AuNCs) templated with DNA (5′‐CCCCCCCCCCCCTTTTTT‐3′), and subsequently employed the fluorescent DNA‐AuNCs as a novel probe for sensitive detections of mercury ions (Hg2+). Basically, the procedure is due to the formation of thymidine–Hg2+–thymidine duplexes between DNA‐AuNCs and Hg2+, thus leading to aggregations of DNA‐AuNCs described here occurring, and facilitating their fluorescence decrease. Significantly, this decrease of fluorescent signals permitted sensitive detection of Hg2+ in a linear range of 0.1–100 µmol L?1, with a detection limit of 0.083 µmol L?1 at a signal‐to‐noise ratio of 3. Additionally, the practicality of this probe for assaying Hg2+ in human urine and lake water samples was further validated, and showed various advantages including simplicity, selectivity, sensitivity and low cost, demonstrating its potential to broaden ways for assaying Hg2+ in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A hydroponic experiment was conducted to investigate the effects of cadmium (Cd) on chlorophyll fluorescence and photosynthetic parameters on a Cd accumulating plant of Elsholtzia argyi. Four weeks-seedlings of E. argyi were treated with 0 (CK) 5, 10, 15, 20, 25, 30, 40, 50 and 100 μmol L?1 Cd for 21days. Fv/Fo, Fv/Fm, qP, ΦPSП, ETR and Fv′/Fm′ were significantly increased under low Cd (5–15 μmol L?1 for Fv/Fo, Fv/Fm and qP, 5–10 μmol L?1 for ΦPSП, ETR and Fv′/Fm′) stress, and these parameters were similar to control under Cd ≤ 50μmol L?1. All above parameters were significantly decreased at 100 μmol L?1 Cd. Compared with control, Pn was significantly (P < 0.05) increased under 5–30 μmol L?1 Cd. However, 50 and 100 μmol L?1 Cd significantly (P < 0.05) reduced it. Gs and Tr were substantially decreased at 50–100 and 40–100 μmol L?1 Cd, respectively. Ci was significantly increased at 50 and 100 μmol L?1 Cd. High Cd-induced decrease of Pn is not only connected to stomatal limitation but also to the inhibition of Fv/Fo, Fv/Fm, ΦPSП, qP, ETR and increase of NPQ. Maintain chlorophyll fluorescence and photosynthesis parameters under its Cd tolerance threshold were one of tolerance mechanisms in E. argyi.  相似文献   

12.
Based on the inhibition effect of methimazole (MMI) on the reaction of luminol–H2O2 catalyzed by gold nanoparticles, a novel chemiluminescence (CL) method was developed for the determination of MMI. Under the optimum conditions, the relative CL intensity was linearly related to MMI concentration in the range from 5.0 × 10?8 to 5.0 × 10?5 mol L?1. The detection limit was 1.6 × 10?8 mol L?1 (S/N = 3), and the RSD for 6.0 × 10?6 mol L?1 MMI was 4.83 (n = 11). This method has high sensitivity, wide linear range, inexpensive instrumentation and has been applied to detect MMI in pharmaceutical tablets and pig serum samples. Furthermore, a possible reaction mechanism is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and selective spectrofluorimetric method for the detection of chlortetracycline (CTC) was studied. In pH 7.4 buffer medium l ‐tryptophan (l ‐Trp), applied as the fluorescence probe, interacted with CTC resulting in fluorescence quenching of the probe. CTC was detected with maximum excitation and emission wavelengths at λex/λem = 275/350 nm. Notably, quenching of fluorescence intensities was positively proportional to the CTC concentration over the range of 0.65–30 μmol L?1 and the limit of detection was 0.2 μmol L?1. Effect of temperature shown in Stern?Volmer plots, absorption spectra and fluorescence lifetime determination, indicated that fluorescence quenching of l ‐Trp by CTC was mainly by static quenching. The proposed study used practical samples analysis satisfactorily.  相似文献   

14.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred.  相似文献   

16.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

17.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

19.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

20.
Changes in light quantity and quality cause structural changes within the thylakoid membrane; long‐term responses have been described for so‐called ‘sun’ and ‘shade’ leaves. Many leaves, however, experience changes in irradiance on a time scale of minutes due to self‐shading and sun flecks. In this study, mature, attached spinach leaves were grown at 300 µmol photons m?2 s?1 then rapidly switched to a different light treatment. The treatment irradiances were 10, 800 or 1500 µmol m?2 s?1 for 10 min, or 10 or 20 min of self‐shading (about 10 µmol m?2 s?1). Image analysis of transmission electron micrographs revealed that a 10 min switch to a lower light intensity increased grana size and number per chloroplast profile by 10–20%. Returning the leaves to 300 µmol m?2 s?1 for 10 min reversed the phenomenon. Chlorophyll fluorescence measurements of detached, intact leaves at 77 K were suggestive of a transition from state 2 to state 1 upon shading. Diurnal ultrastructural measurements of granal size and number did not reveal a significant net change in ultrastructure over the time scale of hours. It is concluded that spinach chloroplasts can alter the degree of thylakoid appression in response to irradiance changes on a time scale of minutes. These ultrastructural responses are caused by biochemical and biophysical adjustments within the thylakoid membrane that serve to maximize photosynthesis and minimize photo‐inhibition under rapidly fluctuating light environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号