首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid rice has contributed significantly to the dramatic increase of rice production in the world. Despite this, little attention has been given to studying the genetic basis of heterosis in rice. In this paper, we report a diallel analysis of heterosis using two classes of molecular markers: restriction fragment length polymorphisms, (RFLPs) and microsatellites. Eight lines, which represent a significant portion of hybrid rice germ plasm, were crossed in all possible pairs, and the F1s were evaluated for yield and yield component traits in a replicated field trial. The parental lines were surveyed for polymorphisms with 117 RFLP probes and ten microsatellites, resulting in a total of 76 polymorphic markers well-spaced in the rice RFLP map. The results indicated that high level heterosis is common among these crosses: more than 100% midparent and 40% better-parent heterosis were observed in many F1s, including some crosses between maintainer lines. Heterosis was found to be much higher for yield than for yield component traits, which fits a multiplicative model almost perfectly. Between 16 and 30 marker loci (positive markers) detected highly significant effects on yield or its component traits. Heterozygosity was significantly correlated with several attributes of performance and heterosis. Correlations based on positive markers (specific heterozygosity) were large for midparent heterosis of yield and seeds/panicle and also for F1 kernel weight. These large correlations may have practical utility for predicting heterosis.  相似文献   

2.
Using differential display analysis, we assessed the patterns of differential gene expression in hybrids relative to their parents in a diallel cross involving 8 elite rice lines. The analysis revealed several patterns of differential expression including: (1) bands present in one parent and F1 but absent in the other parent, (2) bands observed in both parents but not in the F1, (3) bands occurring in only one parent but not in the F1 or the other parent, and, (4) bands detected only in the F1 but in neither of the parents. Relationships between differential gene expression and heterosis and marker heterozygosity were evaluated using data for RFLPs, SSRs and a number of agronomic characters. The analysis showed that there was very little correlation between patterns of differential expression and the F1 means for all six agronomic traits. Differentially expressed fragments that occurred only in one parent but not in the other parent or in F1 in each of the respective crosses were positively correlated with heterosis and heterozygosity. And conversely, fragments that were detected in F1s but in neither of the respective parents were negatively correlated with heterosis and heterozygosity. The remaining patterns of differential expression were not correlated with heterosis or heterozygosity. The relationships between the patterns of differential expression and heterosis observed in this study were not consistent with expectations based on dominance or overdominance hypotheses.  相似文献   

3.
An essential assumption underlying markerbased prediction of hybrid performance is a strong linear correlation between molecular marker heterozygosity and hybrid performance or heterosis. This study was intended to investigate the extent of the correlations between molecular marker heterozygosity and hybrid performance in crosses involving two sets of rice materials, 9 indica and 11 japonica varieties. These materials represent a broad spectrum of the cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars and parents of superior hybrids. Varieties within each set were intermated in all possible nonreciprocal pairs resulting in 36 crosses in the indica set and 55 in the japonica set. The F1s and their parents, 111 entries in total, were examined for performance of seven traits in a replicated field trial. The parents were surveyed for polymorphisms using 96 RFLP and ten SSR markers selected at regular intervals from a published molecular marker linkage map. Molecular marker genotypes of the F1 hybrids were deduced from the parental genotypes. The analysis showed that, with very few exceptions, correlations in the indica dataset were higher than in that of their japonica counterparts. Among the seven traits analyzed, plant height showed the highest correlation between heterozygosity and hybrid performance and heteorsis in both indica and japonica datasets. Correlations were low to intermediate between hybrid performance and heterozygosity (both general and specific) in yield and yield component traits in both indica and japonica sets, and also low to intermediate between specific heterozygosity and heterosis in the indica set, whereas very little correlation was detected between heterosis and heterozygosity (either general or specific) in the japonica set. In comparison to the results from our previous studies, we concluded that the relationship between molecular marker heterozygosity and heterosis is variable, depending on the genetic materials used in the study, the diversity of rice germplasms and the complexity of the genetic basis of heterosis.  相似文献   

4.
Ten elite inbred lines (four japonica, six indica), chosen from those widely used in the hybrid rice breeding program at Human Hybrid Rice Research Center in China, were crossed to produce all possible hybrids excluding reciprocals. The 45 F1 hybrids along with the ten parents were evaluated for eight traits of agronomic importance, including yield potential, in a replicated field trial. The ten parents were analyzed with 100 arbitrary decamer oligonucleotide primers and 22 microsatellite (simple sequence repeats, SSRs) primer sets via polymerase chain reaction (PCR). Out of the 100 random primers used, 74 were informative and amplified 202 non-redundant bands (variants) with a mean of 2.73 bands per polymorphic primer. All 22 microsatellite primer sets representing 23 loci in the rice genome showed polymorphisms among the ten parents and revealed 90 alleles with an average of 3.91 per SSR locus. Cluster analysis based on Nei's genetic distance calculated from the 291 (202 RAPDs, 89 SSRs) non-redundant variants separated the ten parental lines into two major groups that corresponds to indica and japonica subspecies, which is consistent with the pedigree information. Strong heterosis was observed in hybrids for most of the traits examined. For the 43 diallel crosses (excluding 2 crosses not heading), yield potential, its components (including panicles per plant, spikelets per panicle and 1000-grain weight) and their heterosis in F1 hybrids showed a significant positive correlation with genetic distance. When separate analyses were performed for the three subsets, yield potential and its heterosis showed significant positive correlations with genetic distance for the 15 indica x indica crosses and the 6 japonica x japonica crosses; however, yield potential and its heterosis were not correlated with genetic distance for the 22 indica x japonica crosses. Results indicated that genetic distance measures based on RAPDs and SSRs may be useful for predicting yield potential and heterosis of intra-subspecific hybrids, but not inter-subspecies hybrids.  相似文献   

5.
Genetic distances (GDs) based on morphological characters, isozymes and storage proteins, and random amplified polymorphic DNAs (RAPD) were used to predict the performance and heterosis of crosses in oilseed rape (Brassica napus L.). Six male-sterile lines carrying the widely used Shaan2A cytoplasm were crossed with five restorer lines to produce 30 F1 hybrids. These 30 hybrids and their parents were evaluated for seven agronomically important traits and their mid-parent heterosis (MPH) at Yangling, Shaanxi province in Northwest China for 2 years. Genetic similarity among the parents based on 34 isozyme and seven protein markers was higher than that based on 136 RAPDs and/or 48 morphological markers. No significant correlation was detected among these three sets of data. Associations between the different estimates of GDs and F1 performance for some agronomic traits were significant, but not for seed yield. In order to enhance the predicting efficiency, we selected 114 significant markers and 43 favoring markers following statistical comparison of the mean values of the yield components between the heterozygous group (where the marker is present only in one parent of each hybrid) and the homozygous group (where the marker is either present or absent in both parents of each hybrid) of the 30 hybrids. Parental GD based on total polymorphic markers (GDtotal, indicating general heterozygosity), significant markers (GDsign, indicating specific heterozygosity) and favoring markers (GDfavor, indicating favoring-marker heterozygosity) were calculated. The correlation between GDfavor or GDsign and hybrid performance was higher than the correlation between GDtotal and hybrid performance. GDsign and GDfavor significantly correlated with plant height, seeds per silique and seed yield, but not with the MPH of the other six agronomic traits with the exception of plant height. The information obtained in this study on the genetic diversity of the parental lines does not appear to be reliable for predicting F1 yield and heterosis.  相似文献   

6.
One hundred and fifty-one rice hybrids produced in two sets of half-dialell crosses and their parents (13 cytoplasmic male sterile lines and 19 restorers) were used to predict the F1 performances of seven yield traits through the parental genetic distances (GD) based on SSR markers. The positive loci (PL) and effect-increasing loci (IL), which were screened from SSR polymorphic loci by the F1 traits of 32 parents, together with total loci (TL), were utilized to estimate parental GD and the models were found to predict the traits of hybrids derived from different parents, fixed parents, and different environments, respectively. The results were as follows: (1) 550 polymorphic loci were detected from 174 SSR markers: a dendrogram based on these loci could separate all the sterile and restorer lines used in the present study, which indicated that parental genetic diversity of F1 was large; (2) the correlations between F1 traits and parental GDs based on IL ranged from 0.61 to 0.87 with a mean of 0.76, and they were higher than those on TL or on PL; (3) predictions based on IL for F1 traits (except grain weight per plant) derived from different environments were ideal, but worse for F1 traits derived from different parents; and (4) IL was more effective than TL and PL in predicting traits of F1 with fixed parents, and predictions for fixed restorer combinations were more effective than those for fixed sterile line combinations. These results should facilitate molecular prediction for hybrid yield and other traits by means of both elite sterile and restorer lines.  相似文献   

7.
Two Cytoplasmic Male Sterile lines were crossed with fourteen restorer lines of rice widely grown in the western regions of Maharashtra, India, to produce 28 F1 hybrids which were evaluated for eight agronomically important traits, contributing to yield potential, in replicated field trials. The hybrid performance was recorded along with heterosis and heterobeltiosis. All the rice lines under investigation were subjected to marker-based variability analysis. An attempt was made to correlate genetic distance based on specific markers for each trait individually, as well as average genetic distance based on all specific markers, with hybrid performance and heterosis, by regression analysis. Specific markers could cluster the parental lines in different groups and showed significant correlation with hybrid performance. The data also supports the proposition that epistasis is the basis of heterosis. The analysis, however, revealed a lack of significant predictive values for field application.  相似文献   

8.
 Prediction of the means and genetic variances in segregating generations could help to assess the breeding potential of base populations. In this study, we investigated whether the testcross (TC) means and variances of F3 progenies from F1 crosses in European maize can be predicted from the TC means of their parents and F1 crosses and four measures of parental genetic divergence: genetic distance (GD) determined by 194 RFLP or 691 AFLPTM 1 markers, mid-parent heterosis (MPH), and absolute difference between the TC means of parents (∣P1−P2∣). The experimental materials comprised six sets of crosses; each set consisted of four elite inbreds from the flint or dent germplasm and the six possible F1 crosses between them, which were evaluated for mid-parent heterosis. Testcross progenies of these materials and 20 random F3 plants per F1 cross were produced with a single-cross tester from the opposite heterotic group and evaluated in two environments. The characters studied were plant height, dry matter content and grain yield. The genetic distance between parent lines ranged between 0.17 and 0.70 for RFLPs and between 0.14 and 0.57 for AFLPs in the six sets. Testcross-means of parents, F1 crosses, and F3 populations averaged across the six crosses in a particular set generally agreed well for all three traits. Bartlett’s test revealed heterogeneous TC variances among the six crosses in all sets for plant height, in four sets for grain yield and in five sets for dry matter content. Correlations among the TC means of the parents, F1 crosses, and F3 populations were highly significant and positive for all traits. Estimates of the TC variance among F3 progenies for the 36 crosses showed only low correlations with the four measures of parental genetic divergence for all traits. The results demonstrated that for our material, the TC means of the parents or the parental F1 cross can be used as predictors for the TC means of F3 populations. However, the prediction of the TC variance remains an unsolved problem. Received: 4 August 1997 / Accepted: 17 November 1997  相似文献   

9.
Summary The relationship between heterozygosity and the expression of heterosis at two different nutrition levels was investigated using Drosophila melanogaster. Average daily egg production and egg hatchability were measured in two parental strains and in F1, F2 and reciprocal backcross generations. Heterosis was more pronounced in the poor nutritional conditions. Two electrophoretic markers used to estimate the level of heterozygosity in F2 and backcrosses revealed an excess of heterozygous genotypes. Quantitative genetic effects (an additive line effect and individual and maternal heterosis) were estimated for both traits in the two environments. Although this model gave a reasonable fit in most cases, some epistatic interaction would have to be invoked in order to explain fully the results.  相似文献   

10.
Parental selection is crucial for hybrid breeding, but the methods available for such a selection are not very effective. In this study, a 6×6 incomplete diallel cross was designed using 12 rapeseed germplasms, and a total of 36 hybrids together with their parental lines were planted in 4 environments. Four yield-related traits and seed oil content (OC) were evaluated. Genetic distance (GD) was estimated with 359 simple sequence repeats (SSRs) markers. Heterosis levels, general combining ability (GCA) and specific combining ability (SCA) were evaluated. GD was found to have a significant correlation with better-parent heterosis (BPH) of thousand seed weight (TSW), SCA of seeds per silique (SS), TSW, and seed yield per plant (SY), while SCA showed a statistically significant correlation with heterosis levels of all traits at 1% significance level. Statistically significant correlations were also observed between GCA of maternal or paternal parents and heterosis levels of different traits except for SS. Interestingly, maternal (TSW, SS, and OC) and paternal (siliques per plant (SP) and SY) inheritance of traits was detected using contribution ratio of maternal and paternal GCA variance as well as correlations between GCA and heterosis levels. Phenotype and heterosis levels of all the traits except TSW of hybrids were significantly correlated with the average performance of parents. The correlations between SS and SP, SP and OC, and SY and OC were statistically significant in hybrids but not in parents. Potential applications of parental selection in hybrid breeding were discussed.  相似文献   

11.
Patterns of restriction fragment length polymorphisms (RFLPs) have been proposed as estimators of genetic diversity among breeding lines and as predictors of heterosis and genetic variance. We evaluated these proposals by using a set of nine elite oat lines crossed in a diallel mating design without reciprocals. RFLP analysis was conducted using HindIII-digested DNA and a total of 107 probes from three different sources: 14 heterologous wheat cDNA clones, 17 oat genomic clones, and 76 oat cDNA clones. Of the 77 probes that produced high-quality autoradiographs, 26 detected polymorphisms among this set of lines, with an average of 2.6 variants per probe. RFLP-based genetic distance (FD) was calculated from these data by using Nei and Li's measure of genetic similarity, and was compared with two other measures of genetic divergence. Genealogical distance (GD *) was obtained from the coefficients of parentage based on known parental pedigrees, and multivariate distance (DI) was calculated by using the first five principal components of the parental correlation matrix for 12 agronomic traits. FD was significantly correlated with GD * (r=0.63, P<0.01), but not with DI (r=-0.05). Cluster analysis based on these three distance estimates did not produce equivalent groupings, but the FD and GD * clusters were more similar to each other than to the DI clusters. These results indicate that: (1) sufficient variation exists for further application of RFLP technologyto oats, (2) RFLPs could provide accurate estimates of genetic divergence among elite oat lines, and (3) it is unlikely that dispersed markers can predict heterosis or population genetic variance in oats. Further investigations will require more parental lines, a larger set of markers, and more information on the linkage relationships between RFLP markers and loci controlling the trait of interest.Journal paper No. J-15302 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA. Project No. 2818 and 2447. Supported by Quaker Oats grant to M. Lee  相似文献   

12.
Powdery mildew, caused byEryisphe graminis f. sp.hordei, is one of the most important diseases of barley (Hordeum vulgare). A number of loci conditioning resistance to this disease have been reported previously. The objective of this study was to use molecular markers to identify chromosomal regions containing genes for powdery mildew resistance and to estimate the resistance effect of each locus. A set of 28 F1 hybrids and eight parental lines from a barley diallel study was inoculated with each of five isolates ofE. graminis. The parents were surveyed for restriction fragment length polymorphisms (RFLPs) at 84 marker loci that cover about 1100 cM of the barley genome. The RFLP genotypes of the F1s were deduced from those of the parents. A total of 27 loci, distributed on six of the seven barley chromosomes, detected significant resistance effects to at least one of the five isolates. Almost all the chromosomal regions previously reported to carry genes for powdery mildew resistance were detected, plus the possible existence of 1 additional locus on chromosome 7. The analysis indicated that additive genetic effects are the most important component in conditioning powdery mildew resistance. However, there is also a considerable amount of dominance effects at most loci, and even overdominance is likely to be present at a number of loci. These results suggest that quantitative differences are likely to exist among alleles even at loci which are considered to carry major genes for resistance, and minor effects may be prevalent in cultivars that are not known to carry major genes for resistance.  相似文献   

13.
Predicting heterosis and F1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F1 performance and general combining ability (GCA) in Ethiopian mustard (Brassica carinata). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F1s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA (RAPD) markers (Jaccard’s distances, JD), and correlated with heterosis, F1 performance and GCA sum of parents (GCAsum). The correlation between phenotypic and molecular distances was low (r=0.34, P≤0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis (r=0.53), F1 performance (r=0.61) and GCA (r=0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F1 performance and GCA for plant height and seeds plant−1, (2) heterosis for number of pods plant−1, and (3) F1 performance for 1,000 seed weight. Molecular distance was correlated with GCAsum (r=0.36, P≤0.05) but not significantly with heterosis and F1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA (r=0.90, P≤0.01 for ED and r=0.68, P≤0.05 for JD) and mean heterosis (r=0.79, P≤0.05 for ED and r=0.77, P≤0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F1 performance and GCA than distances estimated from RAPD markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
 The challenge to maize breeders is to identify inbred lines that produce highly heterotic hybrids. In the present study we surveyed genetic divergence among 13 inbred lines of maize using DNA markers and assessed the relationship between genetic distance and hybrid performance in a diallel set of crosses between them. The parental lines were assayed for DNA polymorphism using 135 restriction fragment length polymorphisms (RFLPs) and 209 amplified-fragment polymorphisms (AFLPs). Considerable variation among inbreds was detected with RFLP and AFLP markers. Moreover AFLPs detect polymorphisms more efficiently in comparison to RFLPs, due to the larger number of loci assayed in a single PCR reaction. Genetic distances (GDs), calculated from RFLP and AFLP data, were greater among lines belonging to different heterotic groups compared to those calculated from lines of the same heterotic group. Cluster analysis based on GDs revealed associations among lines which agree with expectations based on pedigree information. The GD values of the 78 F1 crosses were partioned into general (GGD) and specific (SGD) components. Correlations of GD with F1 performance for grain yield were positive but too small to be of predictive value. The correlations of SGDs, particularly those based on AFLP data, with specific combining-ability effects for yield may have a practical utility in predicting hybrid performance. Received: 15 August 1997 / Accepted: 19 September 1997  相似文献   

15.
Summary Fifty-two introgression lines (BC2F8) from crosses between two Oryza sativa parents and five accessions of O. officinalis were analyzed for the introgression of O. officinalis chromosome segments. DNA from the parents and introgression lines was analyzed with 177 RFLP markers located at approximately 10-cM intervals over the rice chromosomes. Most probe/enzyme combinations detected RFLPs between the parents. Of the 174 informative markers, 28 identified putative O. officinalis introgressed chromosome segments in 1 or more of the introgression lines. Introgressed segments were found on 11 of the 12 rice chromosomes. In most cases of introgression, O. sativa RFLP alleles were replaced by O. officinalis alleles. Introgressed segments were very small in size and similar in plants derived from early and later generations. Some nonconventional recombination mechanism may be involved in the transfer of such small chromosomal segments from O. officinalis chromosomes to those of O. sativa. Some of the introgressed segments show association with genes for brown planthopper (BPH) resistance in some introgressed lines, but not in others. Thus, none of the RFLP markers could be unambiguously associated with BPH resistance.  相似文献   

16.
Summary Changes that may have occurred over the past 50 years of hybrid breeding in maize (Zea maize L.) with respect to heterosis for yield and heterozygosity at the molecular level are of interest to both maize breeders and quantitative geneticists. The objectives of this study were twofold: The first, to compare two diallels produced from six older maize inbreds released in the 1950's and earlier and six newer inbreds released during the 1970's with respect to (a) genetic variation for restriction fragment length polymorphisms (RFLPs) and (b) the size of heterosis and epistatic effects, and the second, to evaluate the usefulness of RFLP-based genetic distance measures in predicting heterosis and performance of single-cross hybrids. Five generations (parents, F1; F2, and backcrosses) from the 15 crosses in each diallel were evaluated for grain yield and yield components in four Iowa environments. Genetic effects were estimated from generation means by ordinary diallel analyses and by the Eberhart-Gardner model. Newer lines showed significantly greater yield for inbred generations than did older lines but smaller heterosis estimates. In most cases, estimates of additive x additive epistatic effects for yield and yield components were significantly positive for both groups of lines. RFLP analyses of inbred lines included two restriction enzymes and 82 genomic DNA clones distributed over the maize genome. Eighty-one clones revealed polymorphisms with at least one enzyme. In each set, about three different RFLP variants were typically found per RFLP locus. Genetic distances between inbred lines were estimated from RFLP data as Rogers' distance (RD), which was subdivided into general (GRD) and specific (SRD) Rogers' distances within each diallel. The mean and range of RDs were similar for the older and newer lines, suggesting that the level of heterozygosity at the molecular level had not changed. GRD explained about 50% of the variation among RD values in both sets. Cluster analyses, based on modified Rogers' distances, revealed associations among lines that were generally consistent with expectations based on known pedigree and on previous research. Correlations of RD and SRD with f1 performance, specific combining ability, and heterosis for yield and yield components, were generally positive, but too small to be of predictive value. In agreement with previous studies, our results suggest that RFLPs can be used to investigate relationships among maize inbreds, but that they are of limited usefulness for predicting the heterotic performance of single crosses between unrelated lines.Joint contribution from Cereal and Soybean Research Unit, USDA, Agricultural Research Service and Journal Paper no. J-13929 of the Iowa Agric and Home Economics Exp Stn, Ames, IA 50011. Projects no. 2818 and 2778A.E.M. is presently at the Iowa State University on leave from University of Hohenheim, D-7000 Stuttgart 70, Federal Republic of Germany  相似文献   

17.
Seeds, i.e. embryos, may be genetically different from either of their parents and moreover may express their own heterosis. The objective was to genetically analyse embryo heterosis for their own weight (i.e. seed weight) in comparison with their seedlings’ heterosis, taking the large-seeded crop (Vicia faba L.) as model. A specific diallel mating scheme was used, based on four parental lines, creating 76 seed genotypes in generations P, F1, F2 and BC. Mature seed weight was assessed for these embryo genotypes in 3 years at one German location, and young plant biomass yield of seedlings emerging from these seeds in two greenhouse experiments. The quantitative genetic analysis showed an average of 10.6% mid-parent heterosis for mature seed weight and 14.5% mid-parent heterosis for juvenile biomass. In both traits, the embryos contributed markedly and significantly via their own genes to the genetic variation. For mature embryo weight heterosis, apparently the parental difference in seed weight was decisive, whereas for juvenile biomass heterosis, genetic unrelatedness of parents had priority.  相似文献   

18.
 This study was intended to investigate the extent of genetic differentiation in parental lines of rice hybrids and to analyze the genetic basis underlying the fertility phenomenon in distant crosses. Two subsets of rice material (111 entries in total) were used, including 81 doubled-haploid (DH) lines and 30 Indica and Japonica rice varieties or lines (as a control). The DH lines was derived from a heterotic Indica/Japonica cross (Gui630/02428) by anther culture. The materials in the control represent a broad spectrum of the Asian cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars, super rice and parents of superior hybrids. In accordance with the NC II design, 57 out of the DH lines were test-crossed to two important wide compatibility lines: photoperiod-sensitive genetic male sterile (PGMS) line N422s and thermo-sensitive genetic male sterile (TGMS) line Peiai64s. The F1s and their parents, 182 entries in total, were examined for the performance of seven traits in a replicated field trial. All the rice materials was surveyed for polymorphisms using 92 RFLP markers selected from two published molecular marker linkage maps. Genotypes of the F1 hybrids at the molecular-marker loci were deduced from the parental genotypes. The analysis showed that there were two types of genetic differentiation in the two subsets of rice material; that is, qualitative differentiation in the control and quantitative differentiation in the DH lines. In addition, favorable genic interactions (both intra- or inter-locus) contributed to better increase the fertility in hybrids of distant crosses through incorporation of a wide-compatibility line as the female parent. Favorable genic interactions can be applied in hybrid rice breeding programs by selecting parents with an appropriate extent of genetic differentiation. Received: 5 June 1997 / Accepted: 10 September 1997  相似文献   

19.
Durum wheat (Triticum turgidum L. var. durum) is an economically and nutritionally important cereal crop in the Mediterranean region. To further our understanding of durum genome organization we constructed a durum linkage map using restriction fragment length polymorphisms (RFLPs), simple sequence repeats (SSRs) known as Gatersleben wheat microsatellites (GWMs), amplified fragment length polymorphisms (AFLPs), and seed storage proteins (SSPs: gliadins and glutenins). A population of 110 F9 recombinant inbred lines (RILs) was derived from an intraspecific cross between two durum cultivars, Jennah Khetifa and Cham 1. The two parents exhibit contrasting traits for resistance to biotic and abiotic stresses and for grain quality. In total, 306 markers have been placed on the linkage map – 138 RFLPs, 26 SSRs, 134 AFLPs, five SSPs, and three known genes (one pyruvate decarboxylase and two lipoxygenases). The map is 3598 cM long, with an average distance between markers of 11.8 cM, and 12.1% of the markers deviated significantly from the expected Mendelian ratio 1:1. The molecular markers were evenly distributed between the A and B genomes. The chromosome with the most markers is 1B (41 markers), followed by 3B and 7B, with 25 markers each. The chromosomes with the fewest markers are 2A (11 markers), 5A (12 markers), and 4B (15 markers). In general, there is a good agreement between the map obtained and the Triticeae linkage consensus maps. This intraspecific map provides a useful tool for marker-assisted selection and map-based breeding for resistance to biotic and abiotic stresses and for improvement of grain quality. Received: 14 February 2000 / Accepted: 28 April 2000  相似文献   

20.
In populations derived from commercial hybrid rice combination Shanyou 10, F1 heterosis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozygotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号