首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Determining the genetic potential of a base population from the properties of their parental lines would improve the efficiency of a breeding program. In the present study, we investigated whether the means of the parents and the genetic distance determined from RAPD data (GD) or multivariate analysis (Mahalanobis D2), mid-parent heterosis (MPH), and the absolute difference between means of the parents (∣P1−P2∣) can be used for predicting the means and genetic variances (σ^2 g ) of F3:4 lines derived from different crosses in faba beans. The material comprised 18 intra- and 18 inter-pool crosses among lines from the Minor, Major, and Mediterranean germplasm pools. Fifty F3:4 lines from each cross were evaluated for days to anthesis, plant height, seeds per plant, and seed yield in German (GE) and Mediterranean (ME) environments. GD estimates between parent lines ranged from 0.38 to 0.58, while D2 ranged from 45.5 to 134.7. Correlations between means of the parents and F3:4 lines were highly significant for most traits. Estimates of σ2 g for all traits showed non-significant correlations with MPH, GD, D2. In one ME, ∣P1−P2∣ had significant associations with σ^2 g for seed yield and days to anthesis. The predicted usefulness of crosses, defined as the sum of the population mean and selection responses, was most closely associated with the means of F3:4 lines. We conclude from this study that the means of F3:4 lines can be predicted from the means of the parents, whereas the prediction of genetic variance is still an unsolved problem Received: 12 December 1997 / Accepted: 13 July 1998  相似文献   

2.
Summary The ability to predict agronomic performance of progeny from a cross would be a great benefit to plant breeders in selecting parents. The predictive value of parental genetic relationships estimating F1 progeny means and F4 family variances of nine argronomic traits was tested in 76 oat crosses, using genetic distance measures based on coefficients-of-parentage, quantitatively inherited morphological characters, and discretely inherited biochemical and morphological characters. Coefficients-of-parentage were better predictors of F1 performance than similarity measures derived from plant morphology or discretely inherited characters. Combined distance measures were better estimators of F1 specific combining ability (SCA) effects than any single measure. Among cultivars of similar adaptation and quantitative morphology, crosses between parents with high coefficients-of-parentage gave higher SCA effect values than crosses of distantly related parents for grain yield and total biomass. The opposite was found for crosses among cultivars of different adaptation or quantitative morphology. The best predictor of trait variances among F4 families was coefficients-of-parentage. Crosses between more distantly related parents produced larger variances among families than crosses between closely related parents for plant biomass. For grain yield, test weight, heading date, grain filling period, and maturity date, crosses between more closely related parents produced larger among-family variances than crosses of distantly related parents. Crosses between more distantly related parents involved at least one parent unadapted to central New York, and resulted in most of the progeny being generally unadapted. This, in part, may account for the low genetic variances for heading date, test weight, and grain yield in crosses of distantly related parents.  相似文献   

3.
 Breeders desire populations with a high mean performance and a large genetic variance. Theory and methods are lacking for predicting additive variance (V A ) and testcross variance (V T ) in biparental populations. Breeders have unsuccessfully attempted to predict V A based on the coefficient of coancestry ( f ) or molecular-marker similarity between parents. In this paper, we derive the expected values of V A and V T in biparental populations, examine the variability of V A among biparental crosses, and discuss how V A and V T may be predicted in applied breeding programs. Suppose i is a recombinant inbred derived from the cross between inbreds P 1 and P 2, and inbred j is not a direct descendant of i. Let V A(i,j) be the additive variance in the F2 of the (i×j) biparental cross. Let V T(i, j) be the variance among testcrosses of F2 individuals with a specific unrelated inbred or population. Assuming linkage equilibrium and the absence of epistasis, V A(i, j) V A(P1, j) +(1−λ) V A(P2, j) , where λ= parental contribution of P 1 to i. Similarly, V T(i, j) = λV T(P1, j) +(1−λ) V T(P2, j) . Additive variance in crosses between recombinant inbreds cannot be modelled as a function of  f if, as indicated in the literature, V A differs among crosses of founder inbreds. If molecular-marker similarity between parents is used as an estimate of f, then a strong linear relationship is likewise not expected between V A and marker similarity. Differences between the actual and expected λ led to variation in V A . In applied breeding programs, modelling V A or V T in biparental crosses may be feasible with estimates of V A or V T in prior crosses and information on λ obtained from molecular-marker data. Received: 23 September 1997 / Accepted: 30 December 1997  相似文献   

4.
Summary Combining ability studies for grain yield and its primary component traits in diallel crosses involving seven diverse wheat cultivars of bread wheat (Triticum aestivum L.) over generations F1-F5 are reported. The general and specific combining ability variances were significant in all generations for all the traits except specific combining ability variance for number of spikes per plant in the F5. The ratio of general to specific combining ability variances was significant for all the traits except grain yield in all the generations. This indicated an equal role of additive and non-additive gene effects in the inheritance of grain yield, and the predominance of the former for its component traits. The presence of significant specific combining ability variances in even the advanced generations may be the result of an additive x additive type of epistasis or evolutionary divergence among progenies in the same parental array. The relative breeding values of the parental varieties, as indicated by their general combining ability effects, did not vary much over the generations. The cheap and reliable procedure observed for making the choice of parents, selecting hybrids and predicting advanced generation (F5) bulk hybrid performance was the determination of breeding values of the parents on the relative performance of their F2 progeny bulks.  相似文献   

5.
Summary In a study designed to develop a more efficient breeding method for concurrent protein-yield improvements in wheat (Triticum aestivum L. em. Thell), 7 base populations [2 F2's, 1 intermated F2 (IF2) and 4 partial backcross (PBC) populations] developed from biparental crosses involving 2 Canadian hard red spring (CHRS) and 2 Canadian utility (CU) wheat cultivars were evaluated in Winnipeg, Manitoba, Canada. The IF2 and PBC populations were generated for comparison with conventional F2 populations and to determine which of the 4 methods of population development would provide a more efficient means of producing potentially superior genetic recombinants. Parameters pertaining to means, variances, correlations, heritabilities and frequencies of desirable and undesirable progenies were used to evaluate the limitations to genetic gain that may be expected from selection for GY and GPC in F2, IF2, CHRS-PBC and CU-PBC populations. Analysis of protein and yield data from 105 S1 lines derived from each of the 7 populations showed the CU-PBC's to have the highest grain yield (GY) and the lowest grain protein concentration (GPC) means; and the CHRS-PBC's, the lowest GY and the highest GPC means. The F2 and IF2 populations were intermediate for both characteristics. Populations developed from the same biparental cross did not differ significantly with respect to the majority of genetic parameters. However, desirable progenies combining high GY with high GPC were more frequent in the CU-PBC, and least frequent in the CHRS-PBC populations. The observed superiority of the CU-PBC populations appeared to be related to the advantage the system has in preserving the genetic integrity of a proven cultivar, while adding desirable genetic factors from another cultivar, thus capitalizing on introgression and upgrading simultaneously.Contribution No. 549 from Agriculture Canada, Lacombe Research Station. Research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada  相似文献   

6.
Seeds, i.e. embryos, may be genetically different from either of their parents and moreover may express their own heterosis. The objective was to genetically analyse embryo heterosis for their own weight (i.e. seed weight) in comparison with their seedlings’ heterosis, taking the large-seeded crop (Vicia faba L.) as model. A specific diallel mating scheme was used, based on four parental lines, creating 76 seed genotypes in generations P, F1, F2 and BC. Mature seed weight was assessed for these embryo genotypes in 3 years at one German location, and young plant biomass yield of seedlings emerging from these seeds in two greenhouse experiments. The quantitative genetic analysis showed an average of 10.6% mid-parent heterosis for mature seed weight and 14.5% mid-parent heterosis for juvenile biomass. In both traits, the embryos contributed markedly and significantly via their own genes to the genetic variation. For mature embryo weight heterosis, apparently the parental difference in seed weight was decisive, whereas for juvenile biomass heterosis, genetic unrelatedness of parents had priority.  相似文献   

7.
Analysis of a combined F1/F2 diallel cross in wheat   总被引:2,自引:0,他引:2  
Analysis of a conventional diallel cross offers only perfect-fit estimates of the genetic components of variation, but no test for the goodness of fit of the model based on these estimates. When F2 progenies are available, however, combining F1 and F2 diallels in a single experiment overcomes these problems. Least-squares estimates of these components can be calculated, errors attached to them and the goodness of fit of the resultant model tested. This analysis was applied to data on the severity of yellow rust infection in an F1/F2 half-diallel cross among eight bread wheat lines adapted to the East African highlands. After removing two interacting arrays, genetic analysis indicated that an additive/dominance model of gene action satisfactorily explained the variation observed among the remaining six parents and their progenies, in both the individual F1 and F2 diallels and the combined F1/F2 diallel. Resistance to yellow rust was dominant to susceptibility and genes for increased resistance were more frequent. Received: 25 May 2000 / Accepted: 31 July 2000  相似文献   

8.
Parental selection influences the gain from selection and the optimum allocation of test resources in breeding programs. We compared two hybrid maize (Zea mays L.) breeding schemes with evaluation of testcross progenies: (a) doubled haploid (DH) lines in both stages (DHTC) and (b) S1 families in the first stage and DH lines within S1 families in the second stage (S1TC-DHTC). Our objectives were to (1) determine the optimum allocation regarding the number of crosses, S1 families, DH lines, and test locations, (2) investigate the impact of parental selection on the optimum allocation and selection gain (ΔG), and (3) compare the maximum ΔG achievable with each breeding scheme. Selection gain was calculated by numerical integration. Different assumptions were made regarding the budget, variance components, correlation between the mean phenotypic performance of the parents and the mean genotypic value of the testcross performance of their progenies (ρ P ), and the composition of the finally selected test candidates. In comparison with randomly chosen crosses, maximum ΔG was largely increased with parental selection in both breeding schemes. With an increasing correlation ρ P , this superiority increased strongly, while the optimum number of crosses decreased in favor of an increased number of test candidates within crosses. Thus, concentration on few crosses among the best parental lines might be a promising approach for short-term success in advanced cycle breeding. Breeding scheme S1TC-DHTC led to a larger ΔG but had a longer cycle length than DHTC. However, with further improvements in the DH technique and the realization of more than two generations per year, early testing of S1 families prior to production of DH lines would become very attractive in hybrid maize breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. Wegenast and C. F. H. Longin contributed equally to this work.  相似文献   

9.
One hundred and fifty-one rice hybrids produced in two sets of half-dialell crosses and their parents (13 cytoplasmic male sterile lines and 19 restorers) were used to predict the F1 performances of seven yield traits through the parental genetic distances (GD) based on SSR markers. The positive loci (PL) and effect-increasing loci (IL), which were screened from SSR polymorphic loci by the F1 traits of 32 parents, together with total loci (TL), were utilized to estimate parental GD and the models were found to predict the traits of hybrids derived from different parents, fixed parents, and different environments, respectively. The results were as follows: (1) 550 polymorphic loci were detected from 174 SSR markers: a dendrogram based on these loci could separate all the sterile and restorer lines used in the present study, which indicated that parental genetic diversity of F1 was large; (2) the correlations between F1 traits and parental GDs based on IL ranged from 0.61 to 0.87 with a mean of 0.76, and they were higher than those on TL or on PL; (3) predictions based on IL for F1 traits (except grain weight per plant) derived from different environments were ideal, but worse for F1 traits derived from different parents; and (4) IL was more effective than TL and PL in predicting traits of F1 with fixed parents, and predictions for fixed restorer combinations were more effective than those for fixed sterile line combinations. These results should facilitate molecular prediction for hybrid yield and other traits by means of both elite sterile and restorer lines.  相似文献   

10.
The combining abilities of field resistance to peanut bud necrosis disease (PBND) caused by Peanut bud necrosis tospovirus (PBNV) were examined to understand the type of gene action governing resistance to the disease, and to identify peanut lines suitable for use as parents in a PBND‐resistance breeding programme. The Ft and F2 progenies from a six‐parent diallel cross and their parents were evaluated under field conditions. They were assessed for disease incidence at 30, 40, 50 and 60 days after planting (DAP), and reactions of the lines to the disease could be best differentiated at 50 and 60 DAP. Results indicated highly significant general combining ability (GCA) effects for PBND incidence in F1 and F2 generations. Specific combining ability (SCA) and reciprocal effects were also found to be significant, but their relative contributions to variation among crosses were much less than those of GCA effects. These results suggested that the type of gene action governing resistance to PBND was mainly additive, and selection for PBND resistance in these populations should be effective. Strong correlation coefficients between parental means and GCA effects for disease incidence were seen in both Ft and F2 generations, suggesting that per se performance of the parental line could be used as a predictor of the capability of the line to transmit its PBND‐resistant attribute to progenies. The reciprocal effects were in favour of using resistant lines as female parents. The peanut lines ICGV 86388, 1C 10 and 1C 34 were found to be suitable for use in a PBND–resistance breeding programme.  相似文献   

11.
Sixteen crosses between eight winter wheat cultivars were screened for resistance to Septoria nodorum leaf and glume blotch in the F1 and F4 generations using artificial inoculation in the field. The F1 of most crosses showed dominance for susceptibility on both ear and leaf. The effects of general combining ability were of similar magnitude as the effects for specific combining ability. On the basis of the phenotypic difference of the parents, no prediction was possible about the amount and the direction of genetic variance in the segregating populations. The variation observed in this study both within and among the segregating populations suggests a quantitative inheritance pattern influencing the expression of the two traits. The components of variance between F2 families within a population were as high as (for S. nodorum blotch on the ear) or higher (for S. nodorum blotch on the leaf) than those between populations. Therefore, strong selection within a few populations may be as effective to obtain new resistant genotypes as selection in a large number of populations. In almost all crosses, progenies were found that were more resistant than the better parent. Thus transgression breeding may be a tool to breed for higher levels of resistance to S. nodorum blotch. Highly resistant genotypes were found even in combination with two susceptible parents. The genetic source for Septoria resistance is probably broader than is generally assumed and could be used to improve S. nodorum resistance by combination breeding followed by strong selection in large populations. Received: 18 January / Accepted: 30 April 1999  相似文献   

12.
The variation of the parental genome contribution (PGC) and its relationship with the genetic architecture of heterosis have received little attention. Our objectives were to (1) derive formulas for the variance of PGC in selfing, backcross (BC) or intermated generations produced from biparental crosses of homozygous parents, (2) investigate the correlation r(Z2 ,\UppsiM ) r(Z_{2} ,\Uppsi_{M} ) of the PGC (\UppsiM ) (\Uppsi_{M} ) estimated by a set M of markers, with Z 2 (half the trait difference between each pair of BC progenies) in the Design III, and (3) interpret experimental results on this correlation with regard to the genetic basis of heterosis. Under all mating systems, the variance of PGC is smaller in species with a larger number and more uniform length of chromosomes. It decreases with intermating and backcrossing but increases under selfing. The ratio of variances of PGC in F1DH (double haploids), F2 and BC1 populations is 4:2:1, but it is smaller in advanced selfing generations than expected for quantitative traits. Thus, altering the PGC by marker-assisted selection for the genetic background is more promising (i) in species with a smaller number and/or shorter chromosomes and (ii) in F2 than in progenies of later selfing generations. The correlation r(Z2 ,\UppsiM ) r(Z_{2} ,\Uppsi_{M} ) depends on the linkage relationships between M and the QTL influencing Z2 as well as the augmented dominance effects di* d_{i}^{*} of the QTL, which include dominance and additive × additive effects with the genetic background, and sum up to mid-parent heterosis. From estimates of r(Z2 ,\UppsiM ) r(Z_{2} ,\Uppsi_{M} ) as well as QTL studies, we conclude that heterosis for grain yield in maize is caused by the action of numerous QTL distributed across the entire genome with positive di* d_{i}^{*} effects.  相似文献   

13.
The F2 and F3 generations of two crosses (6123×13083 and 6123×144, with 6123 the regenerating parent) were evaluated for callus growth and regeneration capacity. Based on joint scaling tests and variance partitioning, neither callus growth nor regeneration fitted a simple additive-dominant genetic model. Heritability estimates obtained from parent-offspring regression analyses ranged from 0.65 to 0.77 for callus growth and from 0.19 to 0.46 for regeneration, with the range in both influenced by the cross and numerical scale employed. Members of two F3 families exhibited much more vigorous and prolific regeneration than the regenerating parental genotype. Because many individuals in the segregating generations showed no evidence of regeneration, population distributions for this trait were severely truncated, or censored. Regression-order analysis was used to estimate means and variances of these censored populations. The association between poor callus growth and high regeneration capacity observed in the parental lines was absent from the F2 and F3 generations, indicating that no association between callus growth and regeneration was present.  相似文献   

14.
Summary In winter wheat (Triticum aestivum L.), the development of a methodology to estimate genetic divergence between parental lines, when combined with knowledge of parental performance, could be beneficial in the prediction of bulk progeny performance. The objective of this study was to relate F2 heterosis for grain yield and its components in 116 crosses to two independent estimates of genetic divergence among 28 parental genotypes of diverse origins. Genetic divergence between parents was estimated from (a) pedigree relationships (coefficients of kinship) determined without experimentation, and (b) quantitative traits measured in two years of field experimentation in Kansas and North Carolina, USA. These distances, designated (1 -r) and G, respectively, provided ample differentiation among the parents. The 116 F2 bulks were evaluated at four locations in Kansas and North Carolina in one year. Significant rank correlations of 0.46 (P = 0.01) and 0.44 (P = 0.01) were observed between G and grain yield and kernel number heterosis, respectively. Although (1 -r) was poorly associated with grain yield heterosis, G and midparent performance combined to account for 50% of the variation in F2 yields among crosses when (1 -r) was above the median value, whereas they accounted for only 9% of the variation among crosses when (1-r) was below the median. Midparent and (1 -r) had equal effects on F2 grain yield (R 2= 0.40) when G was greater than the median value. A breeding strategy is proposed whereby parents are first selected on the basis of performance per se and, subsequently, crosses are made between genetically divergent parents that have both large quantitative (G) and pedigree divergence (1 -r).Paper No. 12162 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, and Contribution No. 89-396-J of the Kansas Agricultural Experiment Station, Manhattan, KS 66506  相似文献   

15.
Libraries of near-isogenic lines (NILs) are a powerful plant genetic resource to map quantitative trait loci (QTL). Nevertheless, QTL mapping with NILs is mostly restricted to genetic main effects. Here we propose a two-step procedure to map additive-by-additive digenic epistasis with NILs. In the first step, a generation means analysis of parents, their F1 hybrid, and one-segment NILs and their triple testcross (TTC) progenies is used to identify in a one-dimensional scan loci exhibiting QTL-by-background interactions. In a second step, one-segment NILs with significant additive-by-additive background interactions are used to produce particular two-segment NILs to test for digenic epistatic interactions between these segments. We evaluated our approach by analyzing a random subset of a genomewide Arabidopsis thaliana NIL library for growth-related traits. The results of our experimental study illustrated the potential of the presented two-step procedure to map additive-by-additive digenic epistasis with NILs. Furthermore, our findings suggested that additive main effects as well as additive-by-additive digenic epistasis strongly influence the genetic architecture underlying growth-related traits of A. thaliana.  相似文献   

16.
Some breeders select inbreds from many F2 or backcross breeding populations, each with relatively few progenies. Other breeders select inbreds from only a few breeding populations, each with many progenies. My objectives were to: (1) determine the relative importance of parental selection, number of breeding populations, and size of each population, and (2) find optimum combinations between number and size of breeding populations. I assumed that a breeder has resources to test a total of 2,000 recombinant inbreds for a quantitative trait that was controlled by 100 additive loci and had a heritability of 0.20, 0.60, or 1.0. The parental inbreds had an inherent pedigree structure due to advanced cycle breeding. The parental inbreds were ranked according to their mean performance, and breeding populations were made among all parents, the top 25% of parents, and the top 10% of parents. I found that the issue of number versus size of breeding populations was only secondary compared with the ability to identify, prior to making the crosses, the breeding populations with the highest mean performance. For a given level of effectiveness of parental selection, the selection response was largest when the maximum number of breeding populations was used. The effect of the number of breeding populations was minor, however, when selection was practiced among the parents or when heritability was less than 1.0. The results suggested that, in practice, large selection responses could be obtained with a wide range of combinations between number and size of breeding populations.Communicated by H.C. Becker  相似文献   

17.
Predicting heterosis and F1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F1 performance and general combining ability (GCA) in Ethiopian mustard (Brassica carinata). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F1s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA (RAPD) markers (Jaccard’s distances, JD), and correlated with heterosis, F1 performance and GCA sum of parents (GCAsum). The correlation between phenotypic and molecular distances was low (r=0.34, P≤0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis (r=0.53), F1 performance (r=0.61) and GCA (r=0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F1 performance and GCA for plant height and seeds plant−1, (2) heterosis for number of pods plant−1, and (3) F1 performance for 1,000 seed weight. Molecular distance was correlated with GCAsum (r=0.36, P≤0.05) but not significantly with heterosis and F1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA (r=0.90, P≤0.01 for ED and r=0.68, P≤0.05 for JD) and mean heterosis (r=0.79, P≤0.05 for ED and r=0.77, P≤0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F1 performance and GCA than distances estimated from RAPD markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Ten elite inbred lines (four japonica, six indica), chosen from those widely used in the hybrid rice breeding program at Human Hybrid Rice Research Center in China, were crossed to produce all possible hybrids excluding reciprocals. The 45 F1 hybrids along with the ten parents were evaluated for eight traits of agronomic importance, including yield potential, in a replicated field trial. The ten parents were analyzed with 100 arbitrary decamer oligonucleotide primers and 22 microsatellite (simple sequence repeats, SSRs) primer sets via polymerase chain reaction (PCR). Out of the 100 random primers used, 74 were informative and amplified 202 non-redundant bands (variants) with a mean of 2.73 bands per polymorphic primer. All 22 microsatellite primer sets representing 23 loci in the rice genome showed polymorphisms among the ten parents and revealed 90 alleles with an average of 3.91 per SSR locus. Cluster analysis based on Nei's genetic distance calculated from the 291 (202 RAPDs, 89 SSRs) non-redundant variants separated the ten parental lines into two major groups that corresponds to indica and japonica subspecies, which is consistent with the pedigree information. Strong heterosis was observed in hybrids for most of the traits examined. For the 43 diallel crosses (excluding 2 crosses not heading), yield potential, its components (including panicles per plant, spikelets per panicle and 1000-grain weight) and their heterosis in F1 hybrids showed a significant positive correlation with genetic distance. When separate analyses were performed for the three subsets, yield potential and its heterosis showed significant positive correlations with genetic distance for the 15 indica x indica crosses and the 6 japonica x japonica crosses; however, yield potential and its heterosis were not correlated with genetic distance for the 22 indica x japonica crosses. Results indicated that genetic distance measures based on RAPDs and SSRs may be useful for predicting yield potential and heterosis of intra-subspecific hybrids, but not inter-subspecies hybrids.  相似文献   

19.
Summary In hybrid breeding programs, testcross evaluation of lines can be done during the early stages of selfing (early testing) or delayed until the lines are near-homozygous. To evaluate the usefulness of early testing, the expected genetic and phenotypic correlations between testcross performance at different selfing generations were examined. The genetic correlation (r GnGn ) between testcross performance of S n and S n , (n>n) individuals or lines is equal to the square root of the ratio of their testcross genetic variances, and it is a function of the inbreeding coefficients (F) at the two selfing generations, i.e., r GnGn=[(1+F n )/(1+F n )]0.5. The genetic correlation between testcross performance of lines and their directly descended homozygous (n=) lines is 0.71 for S1; 0.87 for S2, 0.93 for S3, 0.97 for S4, 0.98 for S5, and 0.99 for S5 lines. The effectiveness of early testing is limited mainly by nongenetic effects. The square root of testcross heritability at generation n sets the upper limit on the correlation between phenotypic value at generation n and genotypic value at homozygosity. The probabilities of correctly retaining S n individuals or lines that have superior testcross performance at homozygosity (n=) indicate that early testing should be effective in identifying lines with above- and below-average combining ability. However, the risk of losing lines with superior combining ability is high if strong (best 10%) selection pressure is applied during early testing. If only a small proportion of lines is retained based on testcross performance and/or if the heritability of the trait is low, selfing for two or three generations prior to testcrossing may be desirable to increase the likelihood of retaining lines that perform well at homozygosity. The theoretical results in this study support the testcross evaluation procedures for grain yield used by most maize (Zea mays L.) breeders.A contribution from Limagrain Genetics, a Groupe Limagrain company  相似文献   

20.
 Yield performance of each group of ten spring bread wheat lines selected by doubled haploid (DH), single-seed descent (SSD) and pedigree selection (PS) methods from three F1 crosses was compared with the aim of evaluating the DH method in breeding programs. Populations of 65–97 DH lines and 110 SSD lines per cross were used for selection. PS lines were developed by repeated selections from 1500 F2 plants. Yield evaluation was performed at the F6 generation of SSD and PS lines along with DH lines in a 2-year field experiment. It took only 2 years from the planting of wheat materials for DH production to the planting of selected DH lines for yield evaluation. There was no significant difference in grain yield between DH lines and PS lines selected from an F1 cross whose parental varieties were closely related in their pedigrees. In two crosses with low coefficients of parentage and a large variation in their progenies, grain yield of selected DH lines was significantly lower than those of selected SSD and PS lines. These results confirm that the DH method can save time in obtaining recombinant inbred lines ready for yield evaluation. However, a larger DH population is required to achieve the same level of genetic advance with the PS method in crosses containing greater genetic variation. Received: 23 December 1997 / Accepted: 12 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号