首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We analyzed a cohort of 61 follicular lymphomas (FL) with an abnormal G-banded karyotype by spectral karyotyping (SKY) to better define the chromosome instability associated with the t(14;18)(q32;q21) positive and negative subsets of FL and histologic grade. In more than 70% of the patients, SKY provided additional cytogenetic information and up to 40% of the structural abnormalities were revised. The six most frequent breakpoints in both SKY and G-banding analyses were 14q32, 18q21, 3q27, 1q11-q21, 6q11-q15 and 1p36 (15-77%). SKY detected nine additional sites (1p11-p13, 2p11-p13, 6q21, 8q24, 6q21, 9p13, 10q22-q24, 12q11-q13 and 17q11-q21) at an incidence of >10%. In addition to the known recurring translocations, t(14;18)(q32;q21) [70%], t(3;14)(q27;q32) [10%], t(1;14)(q21;q32) [5%] and t(8;14)(q24;q32) [2%] and their variants, 125 non-IG gene translocations were identified of which four were recurrent within this series. In contrast to G-banding analysis, SKY revealed a greater degree of karyotypic instability in the t(14;18) (q32;q21) negative subset compared to the t(14;18)(q32;q21) positive subset. Translocations of 3q27 and gains of chromosome 1 were significantly more frequent in the former subset. SKY also allowed a better definition of chromosomal imbalances, thus 37% of the deletions detected by G-banding were shown to be unbalanced translocations leading to gain of genetic material. The majority of recurring (>10%) imbalances were detected at a greater (2-3 fold) incidence by SKY and several regions were narrowed down, notably at gain 2p13-p21, 2q11-q21, 2q31-q37, 12q12-q15, 17q21-q25 and 18q21. Chromosomal abnormalities among the different histologic grades were consistent with an evolution from low to high grade disease and breaks at 6q11-q15 and 8q24 and gain of 7/7q and 8/8q associated significantly with histologic progression. This study also indicates that in addition to gains and losses, non-IG gene translocations involving 1p11-p13, 1p36, 1q11-q21, 8q24, 9p13, and 17q11-q21 play an important role in the histologic progression of FL with t(14;18)(q32;q21) and t(3q27).  相似文献   

2.
DNA copy number changes were studied by comparative genomic hybridization on 10 tumor specimens of squamous cell carcinoma of cervix obtained from Korean patients. DNA was extracted from paraffin-embedded sections after removal of non-malignant cells by microdissection technique. Copy number changes were found in 8/10 tumors. The most frequent changes were chromosome 19 gains (n=6) and losses on chromosomes 4 (n=4), 5 (n=3), and 3p (n=3). A novel finding was amplification in chromosome arm 9p21-pter in 2 cases. Gains in 1, 3q, 5p, 6p, 8q, 16p, 17, and 20q and losses at 2q, 6q, 8p, 9q, 10p, 11, 13, 16q, and 18q were observed in at least one of the cases.  相似文献   

3.
Comparative genomic hybridization (CGH) has been applied to characterize 61 primary renal cell carcinomas derived histogenetically from the proximal tubulus. The tumor samples comprised 46 clear-cell renal cell carcinomas (ccRCCs) and 15 papillary renal cell carcinomas (pRCCs). Changes in the copy number of entire chromosomes or subregions were detected in 56 tumors (92%). In ccRCCs, losses of chromosome 3 or 3p (63%); 14q (30%); 9 (26%); 1 and 6 or 6q (17% each); 4 and 8 or 8p (15% each); 22 (11%); 2 or 2q and 19 (9% each); 7q, 10, 16, 17p, 18, and Y (7% each); and 5, 11, 13, 15, and 21 (4% each) were detected. Most frequent genomic gains in ccRCC were found on chromosome 5 (63%); 7 (35%); 1 or 1q (33%); 2q (24%); 8 or 8q, 12, and 20 (20% each); 3q (17%); 16 (15%); 19 (13%); 6 and 17 or 17q (11% each); and 4, 10, 11, 21, and Y (9% each). In pRCCs, gains in the copy number of chromosomes 7 and 17 (7/15, each) and 16 and 20 (6/15, each) were frequent. One pRCC showed amplification of subchromosome regions 2q22-->q33, 16q, 17q and the entire X chromosome. In pRCC, losses were less frequently seen than gains. Losses of chromosomes 1, 14, 15, and Y (3/15 each) and 2, 4, 6, and 13 (2/15 each) were observed. In ccRCCs, statistical evaluation revealed significant correlations of chromosomal imbalances with tumor stage and grade, i.e., a gain in copy number of chromosome 5 correlated positively with low tumor grade, whereas a gain of chromosomes 10 and 17 correlated positively with high tumor grade. Furthermore, loss of chromosome 4 correlated positively with high tumor stage.  相似文献   

4.
Chromosomal aberrations were analyzed from cultures of peripheral lymphocytes in 2 groups of chagasic children, before and after treatment with nifurtimox. The mean incidence of chromosomal aberrations increased from control values of 1.75 +/- 1.39 (8 patients) to 23.55 +/- 9.55 (6 patients) at a significance of P less than 0.0001. G-banding analysis of chromosomal aberration sites revealed that treated patients present coincidence in the chromosome regions affected: 1p11, 1q11-12, 9q11-13, 17q11-21, 2p21, 2q23, 2q31, 2q33, 6p21, 6p21, 7q32, 13q14, 13q22, 15q22. These data indicate a non-random distribution of chromosomal aberrations induced by nifurtimox therapeutic treatment.  相似文献   

5.
It is possible to distribute the 17 autosomic fragile sites presently known in three categories according to their sensitivity: BrdU-sensitive sites (10q25, 16q22, 17p12), distamycin A-sensitive sites (16q22, 17p12) and folate- and thymidilate-sensitive sites (2q11-q14, 3p14, 6p23, 7p11, 8q22, 9p21, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, 16q23, 17p12, 20p11). Four fundamental problems are discussed, first the relation between the presence of a fragile site and the phenotype, secondly the incidence of autosomic sites, third the origin of fragility (particularity of DNA structure, defect of the DNA/proteins binding and abnormal arrangement of chromatin, abnormality of the metaphasic scaffold) and fourth the localization of fragile sites.  相似文献   

6.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS: gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we were compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22 and Xq22), 6 rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26) and 2 previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22 and Xq26 in patient group than in controls by chi2 test (P = between 0.0001 to 0.036). Sites 3p14, 5q31 and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed.  相似文献   

7.
The cell lines SW480 and SW620, derived from different stages of colon carcinoma in the same patient, have been used for a number of biochemical, immunological, and genetic studies on colon cancer. A comparative analysis of their karyotypes may identify chromosomal aberrations that might represent markers for metastatic spread. In the present study spectral karyotyping (SKY) was applied to these two colon cancer cell lines. Compared to previously reported G-banded karyotypes, 9 (SW480) and 7 (SW620) markers were identical, 3 (SW480) and 3 (SW620) markers could be redefined, 5 (SW480) and 8 (SW620) markers were newly identified, and 4 (SW480) and 5 (SW620) of the previous described markers could not be confirmed. The redefined aberrations include very complex rearrangements, such as a der(16) t(3;16;1;16;8;16; 1;16;10) and a der(18)t(18;15;17)(q12; p11p13;??) in SW620 and a der(19)t(19;8;19;5) in SW480, that have not been identified by conventional banding techniques. The resulting chromosome gains (5q11-->5q15, 7pter-->q22, 11, 13q14-->qter, 20pter-->p12, X) and losses (8pter-->p2, 18q12-->qter, Y) found in both SW480 and SW620 were in good agreement with those frequently described in colorectal tumors as primary changes in the stem cell. Abnormalities found exclusively in SW620 cells only (gains of 5pter-->5q11, 12q12-->q23, 15p13-->p11, and 16q21-->q24 and losses of 2pter-->2p24, 4q28-->qter, and 6q25-->qter) can be viewed as changes that occurred in a putative metastatic founder cell.  相似文献   

8.
cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells.  相似文献   

9.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening of patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS) (gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole-blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22, and Xq22), six rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26), and two previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22, and Xq26 in patient group than in controls by x 2-test (P between 0.0001 to 0.036). Sites 3p14, 5q31, and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed. The text was submitted by the authors in English.  相似文献   

10.
Chromosome comparisons usingin situhybridization of all human chromosome-specific libraries on Capuchin monkey (Cebus capucinus,Cebidae, Platyrrhini) metaphases were performed with a new technique simultaneously revealing a G-banding and chromosome “painting.” A complete homology between human (HSA) andC. capucinus(CCA) chromosomes was demonstrated, except for constitutive heterochromatin. ElevenC. capucinuschromosomes are homologous to 11 human chromosomes: CCA 2 = HSA 4; CCA 3 = HSA 6; CCA 12 = HSA 9; CCA 16 = HSA 11; CCA 10 = HSA 12; CCA 11 = HSA 13; CCA 20 = HSA 17; CCA 8 = HSA 19; CCA 23 = HSA 20; CCA 24 = HSA 22; and CCA X = HSA X. TenC. capucinuschromosomes are homologous to parts of human chromosomes: CCA 13 = HSA 8q; CCA 14 = HSA 2q; CCA 15 = HSA 1p + 1q proximal; CCA 17 = HSA 7 part; CCA 18 and 19 = HSA 3 part; CCA 21 and 22 = HSA 1q distal; CCA 25 = HSA 10p; and CCA 26 = HSA 15q part. SixC. capucinuschromosomes are homologous to parts of two human chromosomes: CCA 1 = HSA 5 + 7 part; CCA 4 = HSA 2p + q proximal + 16q; CCA 5 = HSA 10q + 16p; CCA 6 = HSA 14 + 15 part; CCA 7 = HSA 8p + 18; and CCA 9 = HSA 3 part + 21. Many previous banding comparisons were confirmed but several cryptic or complex rearrangements could be identified. With theC. capucinuskaryotype having been shown to be fairly ancestral, this comparison opens the possibility to compare human chromosomes to most Cebidae species.  相似文献   

11.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

12.
To identify DNA amplifications in sarcomas, comparative genomic hybridization was performed on 27 cases that were likely to display high-level DNA copy number gains. In all cases, chromosome banding analysis had revealed homogeneously staining regions or double minutes, i.e., cytogenetic signs of gene amplification. In most cases, gains predominated over losses. Low-level amplifications (ratio 1.3:1.5) were seen in 20 cases. High-level amplifications (ratio >1.5) exceeded the frequencies seen in published, unselected sarcomas of similar histotypes and were detected in 16 tumors: 4/4 osteosarcomas, 5/8 malignant fibrous histiocytomas, 3/7 leiomyosarcomas, 1/2 myosarcomas, 0/1 liposarcoma, 0/1 rhabdomyosarcoma, 1/1 pleomorphic sarcoma, 0/1 myxofibrosarcoma, 1/1 malignant mesenchymona, and 1/1 malignant schwannoma, with two to four chromosomal regions involved in nine tumors. Recurrent amplifications involved 1p33-p32, 5p15-p14, 7pter-p12, 7q21-qter, 8q21.3-qter, 11q22-q23, 16p13.2-p12, 19q12-q13.1, 20q11.2-qter, and 22q12-q13. Most of the recurrent gains/amplifications we detected have been reported in sarcomas previously. A novel gain/amplification was seen at 2q14.3-q21 in five cases of four sarcoma types. The disparate pattern of amplified sequences, the poor correspondence between the localization of low- and high-level amplifications, and the chromosomal position of homogeneously staining regions suggest the involvement of many genes in the amplifications and that the genes rarely maintain their native position in these tumors.  相似文献   

13.
We have examined the fatty acid substrate specificity of arachidonoyl-CoA synthetase from human platelet membranes. A variety of positional isomers and chain-length analogs of arachidonic acid [20:4(5, 8, 11, 14)] were synthesized, and assayed for their ability to inhibit arachidonoyl-CoA formation or to serve as substrates for the synthetase. The chain-length specificity of the synthetase for delta 8,11,14 trienoic fatty acids was C19 greater than C18 = C20 much greater than C21 greater C22. Inhibition activity by positional isomers of arachidonate was 20:4(5, 8, 11, 14) approximately equal to 20:4(6, 9, 12, 15) = 20:4(7, 10, 13, 16) much greater than 20:4(4, 7, 10, 13), however, Vmax for arachidonate was greater than that for 20:4(6, 9, 12, 15). The enzyme apparently "counts" double bonds from the carboxyl terminus. As counted from the methyl terminus we found that several n-6,-9,-12 fatty acids were ineffective as inhibitors [18:3(6, 9, 12); 19:4)4, 7, 10, 13); 21:3(9, 12, 15)], whereas all methylene-interrupted tri- and tetraenoic fatty acids which contained delta 8 and delta 11 double bonds were potent inhibitors. The delta 11 double bond was best associated with optimal inhibition: 20:3(5, 11, 14) had a lower Ki than 20:3(5, 8, 14). 13-Methyl-20:3(8, 11, 14) did not inhibit the enzyme. Partially purified enzyme from calf brain, depleted of nonspecific long-chain acyl-CoA synthetase, exhibited the same fatty acid specificity as crude platelet enzyme.  相似文献   

14.
Several genetic variants associated with platelet count and mean platelet volume (MPV) were recently reported in people of European ancestry. In this meta-analysis of 7 genome-wide association studies (GWAS) enrolling African Americans, our aim was to identify novel genetic variants associated with platelet count and MPV. For all cohorts, GWAS analysis was performed using additive models after adjusting for age, sex, and population stratification. For both platelet phenotypes, meta-analyses were conducted using inverse-variance weighted fixed-effect models. Platelet aggregation assays in whole blood were performed in the participants of the GeneSTAR cohort. Genetic variants in ten independent regions were associated with platelet count (N?=?16,388) with p<5×10(-8) of which 5 have not been associated with platelet count in previous GWAS. The novel genetic variants associated with platelet count were in the following regions (the most significant SNP, closest gene, and p-value): 6p22 (rs12526480, LRRC16A, p?=?9.1×10(-9)), 7q11 (rs13236689, CD36, p?=?2.8×10(-9)), 10q21 (rs7896518, JMJD1C, p?=?2.3×10(-12)), 11q13 (rs477895, BAD, p?=?4.9×10(-8)), and 20q13 (rs151361, SLMO2, p?=?9.4×10(-9)). Three of these loci (10q21, 11q13, and 20q13) were replicated in European Americans (N?=?14,909) and one (11q13) in Hispanic Americans (N?=?3,462). For MPV (N?=?4,531), genetic variants in 3 regions were significant at p<5×10(-8), two of which were also associated with platelet count. Previously reported regions that were also significant in this study were 6p21, 6q23, 7q22, 12q24, and 19p13 for platelet count and 7q22, 17q11, and 19p13 for MPV. The most significant SNP in 1 region was also associated with ADP-induced maximal platelet aggregation in whole blood (12q24). Thus through a meta-analysis of GWAS enrolling African Americans, we have identified 5 novel regions associated with platelet count of which 3 were replicated in other ethnic groups. In addition, we also found one region associated with platelet aggregation that may play a potential role in atherothrombosis.  相似文献   

15.
A substantial body of evidence suggests the genetic heterogeneous pattern and multiple pathways in colorectal cancer initiation and progression. In this study, we construct a branching tree and multiple distance-based tree models to elucidate these genetic patterns and pathways in colorectal cancer by using a data set comprised of 244 cases of comparative genomic hybridization. We identify the six most common gains of chromosomal regions of 7p (37.0%), 7q11-32 (34.8%), 8q (48.3%), 13q (49.1%), 20p (36.1%), and 20q (50.4%), and the nine most common losses of 1p13-36 (30.9%), 4p15 (24.3%), 4q33-34 (24.3%), 8p12-23 (50.9%), 15q13-14 (23.5%), 15q24-25 (24.3%), 17p (34.8%), 18p (36.5%), and 18q (61.7%) in colorectal cancer. We classify colorectal cancer into two distinct groups: one preceding with -8p12-23, and the other with +20q. The sample-based classification tree also demonstrates that colorectal cancer can be classified into multiple subtypes marked by -8p12-23 and +20q. By comparing chromosomal abnormalities between primary and metastatic colorectal cancer, we identify five potential metastatic pathways: (-18q, -18p), (-8p12-23, -4p15, -4q33-34), (+20q, +20p), (+20q, +7p, +7q11-32), and +8q. -8p12-23 and +20q are inferred to be the two marker events of colorectal cancer metastasis. The current oncogenetic tree models may contribute to our understanding towards molecular genetics in colorectal cancer. Particularly, the metastatic pathways we describe may provide pivotal clues for metastatic candidate genes, and thus impact on the prediction and intervention of metastatic colorectal cancer.  相似文献   

16.
BackgroundThere is variability in clinical outcome for patients with apparently the same stage colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) mapping to chromosomes 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and Xp22 have robustly been shown to be associated with the risk of developing CRC. Since germline variation can also influence patient outcome the relationship between these SNPs and patient survivorship from CRC was examined.MethodsAll enrolled into the National Study of Colorectal Cancer Genetics (NSCCG) were genotyped for 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and xp22 SNPs. Linking this information to the National Cancer Data Repository allowed patient genotype to be related to survival.ResultsThe linked dataset consisted of 4,327 individuals. 14q22.22 genotype defined by the SNP rs4444235 showed a significant association with overall survival. Specifically, the C allele was associated with poorer observed survival (per allele hazard ratio 1.13, 95% confidence interval 1.05–1.22, P = 0.0015).ConclusionThe CRC susceptibility SNP rs4444235 also appears to exert an influence in modulating patient survival and warrants further evaluation as a potential prognostic marker.  相似文献   

17.
18.
Genetic gains and losses resulting from DNA strand breakage by ionizing radiation have been demonstrated in vitro and suspected in radiation-associated thyroid cancer. We hypothesized that copy number deviations might be more prevalent, and/or occur in genomic patterns, in tumors associated with presumptive DNA strand breakage from radiation exposure than in their spontaneous counterparts. We used cDNA microarray-based comparative genome hybridization to obtain genome-wide, high-resolution copy number profiles at 14,573 genomic loci in 23 post-Chernobyl and 20 spontaneous thyroid cancers. The prevalence of DNA gains in tumors from cases in exposed individuals was two- to fourfold higher than for cases in unexposed individuals and up to 10-fold higher for the subset of recurrent gains. DNA losses for all cases were low and more prevalent in spontaneous cases. We identified unique patterns of copy variation (mostly gains) that depended on a history of radiation exposure. Exposed cases, especially the young, harbored more recurrent gains that covered more of the genome. The largest regions, spanning 1.2 to 4.9 Mbp, were located at 1p36.32-.33, 2p23.2-.3, 3p21.1-.31, 6p22.1-.2, 7q36.1, 8q24.3, 9q34.11, 9q34.3, 11p15.5, 11q13.2-12.3, 14q32.33, 16p13.3, 16p11.2, 16q21-q12.2, 17q25.1, 19p13.31-qter, 22q11.21 and 22q13.2. Copy number changes, particularly gains, in post-Chernobyl thyroid cancer are influenced by radiation exposure and age at exposure, in addition to the neoplastic process.  相似文献   

19.
Takano M  Kudo K  Goto T  Yamamoto K  Kita T  Kikuchi Y 《Human cell》2001,14(4):267-271
Cisplatin has played a key-role in the management of ovarian cancer patients. Since the mechanisms of cisplatin-resistance have been reported to be multifactorial, it is quite difficult to predict effectiveness of cisplatin-based chemotherapy. In the present study, we have screened abnormal chromosomal regions in cisplatin-resistant and paclitaxel-resistant human ovarian cancer cell lines using comparative genomic hybridization (CGH). Increased copy number at 6q21-25 and decreased copy number at 7q21-36 and 10q12-15 were observed in the cisplatin-resistant cell line. Increased copy number at 7q11.2-21 was observed in paclitaxel-resistant cell lines. Messenger RNA of MDR1 located on chromosomal region of 7q11.2-21 was overexpressed in the paclitaxel-resistant cell lines and recognized as a potential mechanism of acquired paclitaxel-resistance. In CGH analyses of 28 primary epithelial ovarian cancer patients, gains of 1q21-22 (p = 0.0183) and 13q12-14 (p = 0.0407) were observed in significantly high abundance in the cisplatin-resistant tumor group, compared with the cisplatin-sensitive tumor group. These genetic alterations were suggested to be potential indicators for drug resistance.  相似文献   

20.
Summary Eleven folic acid sensitive fragile sites (3p14, 7p13, 7q31.1, 7q32, 9q32, 11p13, 14q23, 15q22, 16q23, Xp22.2, Xq22) were detected in one individual, eight of them previously unknown. These sites seem to bear each its specific sensitivity to folic acid deficiency. Six of the sites were observed simultaneously on both homologous chromosomes in at least one cell. Each of these 11 sites was also found in at least one among 12 individuals further examined. Some of these individuals showed six of these 11 sites. The fragile site 3p14 was detected in all individuals examined. The homologous sites 3p14 of one individual differed from each other in their frequency of lesions induced by methotrexate as well as fluorodeoxyuridine. This observation suggests that folic acid sensitivity is a property inherent in the chromatin of an individual chromosome at the site involved in fragility. This property seems to be responsible for the nonrandom fragility at that site and also for the individual sensitivity of each chromosomal site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号