首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Breast cancer is a widespread disease in Japan and across the world. Breast cancer cells, as well as most other types of cancer cells, have diverse chromosomal aberrations. Clarifying the character of these chromosomal aberrations should contribute to the development of more suitable therapies, along with the predictions of metastasis and prognosis. Twenty-four breast cancer cell lines were analyzed by bacterial artificial chromosome (BAC) array comparative genomic hybridization (CGH). The array slide contained duplicate spots of 4030 BAC clone DNAs covering the entire human genome with 1 Mbp resolution. In all 24 breast cancer cell lines, frequent and significant amplifications as well as deletions were detected by BAC array CGH. Common DNA copy number gains, detected in 60% (above 15 cell lines) of the 24 breast cancer cell lines were found in 76 BAC clones, located at 1q, 5p, 8q, 9p, 16p, 17q, and 20q. Moreover, common DNA copy number loss was detected in 136 BAC clones, located at 1q, 2q, 3p, 4p, 6q, 8p, 9p, 11p, 13q, 17p, 18q, 19p, Xp, and Xq. The DNA copy number abnormalities found included abnormality of the well-known oncogene cMYC (8q24.21); however, most of them were not reported to relate to breast cancer. BAC array CGH has great potential to detect DNA copy number abnormalities, and has revealed that breast cancer cell lines have substantial heterogeneity.  相似文献   

2.
Karyotype analysis can provide clues to significant genes involved in the genesis and growth of pancreas cancer. The genome of pancreas cancer is complex, and G-band analysis cannot resolve many of the karyotypic abnormalities seen. We studied the karyotypes of 15 recently established cell lines using molecular cytogenetic tools. Comparative genomic hybridization (CGH) analysis of all 15 lines identified genomic gains of 3q, 8q, 11q, 17q, and chromosome 20 in nine or more cell lines. CGH confirmed frequent loss of chromosome 18, 17p, 6q, and 8p. 14/15 cell lines demonstrated loss of chromosome 18q, either by loss of a copy of chromosome 18 (n = 5), all of 18q (n = 7) or portions of 18q (n = 2). Multicolor FISH (Spectral Karyotyping, or SKY) of 11 lines identified many complex structural chromosomal aberrations. 93 structurally abnormal chromosomes were evaluated, for which SKY added new information to 67. Several potentially site-specific recurrent rearrangements were observed. Chromosome region 18q11.2 was recurrently involved in nine cell lines, including formation of derivative chromosomes 18 from a t(18;22) (three cell lines), t(17;18) (two cell lines), and t(12;18), t(15;18), t(18;20), and ins(6;18) (one cell line each). To further define the breakpoints involved on chromosome 18, YACs from the 18q11.2 region, spanning approximately 8 Mb, were used to perform targeted FISH analyses of these lines. We found significant heterogeneity in the breakpoints despite their G-band similarity, including multiple independent regions of loss proximal to the already identified loss of DPC4 at 18q21.  相似文献   

3.
The aim of the present study was to investigate chromosomal alterations in a large set of homogeneous tumors, 98 endometrioid adenocarcinomas. We also wanted to evaluate differences in chromosomal alterations in the different groups of tumors in relation to stage, survival and invasive or metastatic properties of the tumors. Comparative genomic hybridization (CGH) was used to detect chromosomal alterations in tissue samples from 98 endometrioid adenocarcinomas. All chromosomes were involved in DNA copy number variations at least once in the tumor material, but certain changes were recurrent and rather specific. Among the specific changes, it was possible to identify 39 chromosomal regions displaying frequent DNA copy number alterations. The most frequent alteration was detected at 1q25-->q42, in which gains were found in 30 cases (30%). Gains at 19pter-->p13.1 were detected in 26 tumors (26%) and at 19q13.1-->q13.3 in 19 tumors (19%). Increased copy numbers were also detected at 8q (8q21-->q22 and 8q22-->qter), at a relatively high rate, in 17 cases (17%). Furthermore, gains at 10q21-->q23 and 10p were found in 14 (14%) and 13 cases (13%), respectively. The most common losses were found in the three regions 4q22-->qter, 16q21-->qter and 18q21-->qter, all of which were detected in eight of the 98 tumors (8%). We also detected differences between the tumors from deceased patients and from survivors. Gain at 1q25-->q42 was more commonly detected in the tumors from patients who died of cancer. We noted that the regions most affected differed in the different surgical stages (I-IV). The results of the CGH analysis identify specific chromosomal regions affected by copy number changes, appropriate objects for further genetic studies.  相似文献   

4.
5.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

6.
Epithelial ovarian cancer (EOC) is one of the most prevalent gynaecological cancers worldwide. The molecular mechanisms of serous ovarian cancer (SOC) remain unclear and not well understood. SOC cases are primarily diagnosed at the late stage, resulting in a poor prognosis. Advances in molecular biology techniques allow us to obtain a better understanding of precise molecular mechanisms and to identify the chromosome instability region and key driver genes in the carcinogenesis and progression of SOC. Whole-exome sequencing was performed on the normal ovarian cell line IOSE80 and the EOC cell lines SKOV3 and A2780. The single-nucleotide variation burden, distribution, frequency and signature followed the known ovarian mutation profiles, without chromosomal bias. Recurrently mutated ovarian cancer driver genes, including LRP1B, KMT2A, ARID1A, KMT2C and ATRX were also found in two cell lines. The genome distribution of copy number alterations was found by copy number variation (CNV) analysis, including amplification of 17q12 and 4p16.1 and deletion of 10q23.33. The CNVs of MED1, GRB7 and MIEN1 located at 17q12 were found to be correlated with the overall survival of SOC patients (MED1: p = 0.028, GRB7: p = 0.0048, MIEN1: p = 0.0051), and the expression of the three driver genes in the ovarian cell line IOSE80 and EOC cell lines SKOV3 and A2780 was confirmed by western blot and cell immunohistochemistry.  相似文献   

7.
Gain in 1q is a common abnormality in phyllodes tumours of the breast.   总被引:4,自引:0,他引:4  
We studied DNA copy number changes by CGH and allelic imbalance (AI) on 3p by LOH analysis on 22 phyllodes tumours (PT) of the breast in order to gain insight into the genetic basis of tumour progression in PT. Copy number changes were observed in 14 cases (63%). Gain in 1q with 1q21-23 as the minimal overlapping area was seen in 12 cases (55%). The gain was observed both in benign and malignant tumours. Our study did not reveal any DNA copy number changes or allelic loss on 3p. The results suggest that DNA copy number changes are not associated with the histological grade or clinical behaviour of PT and the chromosomal changes on 3p appear to be rare. Colour figure can be viewed on http://www.esacp.org/acp/2003/25-2/jee.htm  相似文献   

8.
Gene amplification is one of the basic mechanisms that lead to overexpression of oncogenes. DNA array comparative genomic hybridization (CGH) has great potential for comprehensive analysis of both a relative gene-copy number and altered chromosomal regions in cancers, which enables us to identify new amplified genes and unstable chromosomal loci. We examined the amplification status in 32 esophageal squamous cell carcinomas (ESCCs) and 13 ESCC cell lines on 51 frequently amplified loci in a variety of cancers by both DNA array CGH and Southern blot analyses. The 1p34 locus containing MYCL1, 2p24 (MYCN), 7p12 (EGFR), and 12q14 (MDM2) were amplified in one of the 32 cases (3%), and the 17q12 locus (ERBB2) and 8p11 (FGFR1) in two of the 32 cases (6%), while only the 11q13 locus (Cyclin D1, FGF4, and EMS1) was frequently amplified (28%, 9/32), demonstrating this locus to be a major target in ESCCs. One locus, 8q24 (c-MYC) was found to be amplified only in the cell lines. Eight out of 51 loci (15.7%) were found to be amplified in at least one of the 32 primary ESCCs or the 13 ESCC cell lines, suggesting that chromosomal loci frequently amplified in a type of human cancer may also be amplified in other types of cancers. This paper is the first report of an application of DNA array CGH to ESCCs.  相似文献   

9.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

10.
11.
Characteristic genetic changes underlying the metastatic progression of malignant melanoma is incompletely understood. The goal of our study was to explore specific chromosomal alterations associated with the aggressive behavior of this neoplasm. Comparative genomic hybridization was performed to screen and compare genomic imbalances present in primary and metastatic melanomas. Sixteen primary and 12 metastatic specimens were analyzed. We found that the pattern of chromosomal aberrations is similar in the two subgroups; however, alterations present only in primary and/or metastatic tumors were also discovered. The mean number of genetic changes was 6.3 (range 1-14) in primary and 7.8 (range 1-16) in metastatic lesions. Frequent losses involved 9p and 10q, whereas gains most often occurred at 1q, 6p, 7q, and 8q. Distinct, high-level amplifications were mapped to 1p12-p21 and 1p22-p31 in both tumor types. Amplification of 4q12-q13.1, 7q21.3-qter and 8q23-qter were detected only in primary tumors. The 20q13-qter amplicon was present in a metastatic tumor. The number of genetic alterations were significantly higher in primary tumors which developed metastases within one year after the surgery compared to tumors without metastasis during this time period. Fluorescence in situ hybridization with centromeric and locus-specific probes was applied to validate CGH results on a subset of tumors. Comparison of FISH and CGH data gave good correlation. The aggressive behavior of melanoma is associated with accumulation of multiple genetic alterations. Chromosome regions, which differ in the primary and metastatic lesions, may represent potential targets to identify metastases-related chromosomal alterations.  相似文献   

12.
We previously reported molecular karyotype analysis of invasive breast tumour core needle biopsies by comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) (Walker et al, Genes Chromosomes Cancer, 2008 May;47(5):405-17). That study identified frequently recurring gains and losses involving chromosome bands 8q22 and 8p21, respectively. Moreover, these data highlighted an association between 8q22 gain and typically aggressive grade 3 tumors. Here we validate and extend our previous investigations through FISH analysis of tumor touch imprints prepared from excised breast tumor specimens. Compared to post-surgical tumor excisions, core needle biopsies are known to be histologically less precise when predicting tumor grade. Therefore investigating these chromosomal aberrations in tumor samples that offer more reliable pathological assessment is likely to give a better overall indication of association. A series of 60 breast tumors were screened for genomic copy number changes at 8q22 and 8p21 by dual-color FISH. Results confirm previous findings that 8p loss (39%) and 8q gain (74%) occur frequently in invasive breast cancer. Both absolute quantification of 8q22 gain across the sample cohort, and a separate relative assessment by 8q22:8p21 copy number ratio, showed that the incidence of 8q22 gain significantly increased with grade (p = 0.004, absolute and p = 0.02, relative). In contrast, no association was found between 8p21 loss and tumor grade. These findings support the notion that 8q22 is a region of interest for invasive breast cancer pathogenesis, potentially harboring one or more genes that, when amplified, precipitate the molecular events that define high tumor grade.  相似文献   

13.
The technique of comparative genomic hybridisation (CGH) has until recently been used to screen for common genomic abnormalities in fresh tumour material; it has identified previously unrecognised regions of amplification associated with poor prognosis subtypes of breast cancer and lymphoma. Our group has applied this technique to resistant cell lines and their sensitive counterparts in order to define chromosomal abnormalities associated with acquired drug resistance. We have demonstrated the applicability of this technique to the study of drug resistance using cell lines with known mechanisms of resistance. The ability to detect novel genomic alterations in cell lines with novel mechanisms of resistance was also demonstrated. We subsequently examined the CGH profiles of seven different cell lines made resistant to three platinum analogues and showed the most consistent abnormalities to involve over-representation of regions 4q and 6q. More recently, we have applied the CGH technique to a series of testicular germ cell tumours (TGCTs) collected as formalin-fixed paraffin-embedded biopsy specimens from patients, both pre- and post-therapy using a platinum-based regimen (POMB/ACE). Previous reports have shown over-representation of X, 7q, 8q and 12p and loss of 13q to occur in 25% of primary TGCTs. Over-representation of 12p was confirmed in the majority of these biopsy samples; deletion of 13q was noted in the initial biopsies of several patients. We also demonstrated alterations of 4p, 4q, 5q and 6q in this series of patients. Newly acquired deletions of 2q and 18q and amplifications of 8q were frequently observed in post-chemotherapy samples from resistant tumours. The CGH studies on these patients with TGCT will not only enable us to correlate our observations on clinical material with those from long-term cell lines, but should also identify sites of key genes involved in clinical platinum resistance.  相似文献   

14.
Comparative genomic hybridization (CGH) has been applied to characterize 61 primary renal cell carcinomas derived histogenetically from the proximal tubulus. The tumor samples comprised 46 clear-cell renal cell carcinomas (ccRCCs) and 15 papillary renal cell carcinomas (pRCCs). Changes in the copy number of entire chromosomes or subregions were detected in 56 tumors (92%). In ccRCCs, losses of chromosome 3 or 3p (63%); 14q (30%); 9 (26%); 1 and 6 or 6q (17% each); 4 and 8 or 8p (15% each); 22 (11%); 2 or 2q and 19 (9% each); 7q, 10, 16, 17p, 18, and Y (7% each); and 5, 11, 13, 15, and 21 (4% each) were detected. Most frequent genomic gains in ccRCC were found on chromosome 5 (63%); 7 (35%); 1 or 1q (33%); 2q (24%); 8 or 8q, 12, and 20 (20% each); 3q (17%); 16 (15%); 19 (13%); 6 and 17 or 17q (11% each); and 4, 10, 11, 21, and Y (9% each). In pRCCs, gains in the copy number of chromosomes 7 and 17 (7/15, each) and 16 and 20 (6/15, each) were frequent. One pRCC showed amplification of subchromosome regions 2q22-->q33, 16q, 17q and the entire X chromosome. In pRCC, losses were less frequently seen than gains. Losses of chromosomes 1, 14, 15, and Y (3/15 each) and 2, 4, 6, and 13 (2/15 each) were observed. In ccRCCs, statistical evaluation revealed significant correlations of chromosomal imbalances with tumor stage and grade, i.e., a gain in copy number of chromosome 5 correlated positively with low tumor grade, whereas a gain of chromosomes 10 and 17 correlated positively with high tumor grade. Furthermore, loss of chromosome 4 correlated positively with high tumor stage.  相似文献   

15.
16.
Endometriosis is characterized by infertility and pelvic pain in 10-15% of women of reproductive age. The genetic events involved in endometriotic cell expansion remain in large part unknown. To identify genomic changes involved in development of this disease, we examined a panel of 18 selected endometriotic tissues by comparative genomic hybridization (CGH), a molecular cytogenetic method that allows screening of the entire genome for chromosomal gains and/or losses. The study was performed on native, nonamplified DNA extracted from manually dissected endometriotic lesions. Recurrent copy number losses on several chromosomes were detected in 15 of 18 cases. Loss of chromosome 1p and 22q were detected in 50% of the cases. Additional common losses occurred on chromosomes 5p (33%), 6q (27%), 7p(22%), 9q (22%), 16 (22%) as well as on 17q in one case. Gain of DNA sequences were seen at 6q, 7q and 17q in three cases. To validate the CGH data, selective dual-color FISH was performed using probes for the deleted regions on chromosomes 1, 7 and 22 in parallel with the corresponding centromeric probes. Cases showing deletion by CGH all had two signals at 1p36, 7p22.1 and 22q12 in less than 30% of the nuclei in comparison to the double centromeric labels found in more than 85% of the cells. These findings indicate that genes localized to previously undescribed chromosomal regions play a role in development and progression of endometriosis.  相似文献   

17.
In order to explore whether specific cytogenetic abnormalities can be used to stratify tumors with a distinctly different clinical course, we performed comparative genomic hybridization (CGH) of tumors from patients who were diagnosed with metastatic disease after an interval of less than 2 years or who remained free from distant metastases for more than 10 years. All patients presented with distant metastases after mastectomy indicating that none of the patients in this study was cured and free of remaining tumor cells. Tumors in the group of short-term survivors showed a higher average number of chromosomal copy alterations compared to the long-term survivors. Of note, the number of sub-chromosomal high-level copy number increases (amplifications) was significantly increased in the group of short-term survivors. In both short- and long-term survivors recurrent chromosomal gains were mapped to chromosomes 1q, 4q, 8q, and 5p. Copy number changes that were more frequent in the group of short-term survivors included gains of chromosome 3q, 9p, 11p and 11q and loss of 17p. Our results indicate that low- and high grade malignant breast adenocarcinomas are characterized by a specific pattern of chromosomal copy number changes. Furthermore, immunohistochemical evaluation of the expression levels of Ki-67, p27KIP1, p21WAF1, p53, cyclin A and cyclin E revealed a correlation between increased proliferative activity and poor outcome.  相似文献   

18.
19.
We discussed the role of DNA topoisomerase I (topo I) inhibitor, which is now widely used in clinical practice, in cisplatin-resistant ovarian cancer. Our study showed the synergistic actions between cisplatin and 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of 7-ethyl-10-[4-(1-pyperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11), in two cisplatin-resistant cancer cell lines, HeLa/CDDP and KFr cells, but not in each parent cell line, HeLa and KF cells. Furthermore, HeLa/CDDP cells had a collateral sensitivity to SN-38. The levels of topo I protein in the cisplatin-resistant cells did not differ from those of their parent cell lines and were unaffected by exposure to cisplatin. In contrast, topo I enzymatic activity was 2-4 fold higher in the cisplatin-resistant cell lines compared with their respective parent cell lines. A significant correlation between the sensitivity for SN-38 and topo I activity human clear cell carcinoma cell lines, which are known as intrinsically ciasplatin-resistant cancer, was observed. Next, we examined the relationship between topo I activity and sensitivity to second-line chemotherapy consisting of cisplatin and CPT-11. A total of 30 patients with ovarian cancer who had initially undergone chemotherapy consisting of cisplatin, doxorubicin, and cyclophosphamide (CAP) and exhibited measurable lesions were entered in the study. Tumor samples were obtained in the period between the initial and the second-line chemotherapy. Of those 30 patients, 18 responded to second-line chemotherapy and 12 did not. Topo I activity in tumor samples of responder was significantly greater than that of in nonresponders. In 8 cases whose samples could be obtained before and after CAP, topo I activity significantly increased after CAP therapy. Consequently, the combination therapy with cisplatin and CPT-11 may be effective for patients with cisplatin-resistant ovarian cancer. In addition, topo I enzymatic activity may be a predictor of the sensitivity for topo I inhibitor.  相似文献   

20.
BACKGROUND: The purpose of this study was to prove the feasibility of a longmer oligonucleotide microarray platform to profile gene copy number alterations in prostate cancer cell lines and to quickly indicate novel candidate genes, which may play a role in carcinogenesis. METHODS/RESULTS AND FINDINGS: Genome-wide screening for regions of genetic gains and losses on nine prostate cancer cell lines (PC3, DU145, LNCaP, CWR22, and derived sublines) was carried out using comparative genomic hybridization on a 35,000 feature oligonucleotide microarray (arrayCGH). Compared to conventional chromosomal CGH, more deletions and small regions of gains, particularly in pericentromeric regions and regions next to the telomeres, were detected. As validation of the high-resolution of arrayCGH we further analyzed a small amplicon of 1.7 MB at 9p13.3, which was found in CWR22 and CWR22-Rv1. Increased copy number was confirmed by fluorescence in situ hybridization using the BAC clone RP11-165H19 from the amplified region comprising the two genes interleukin 11 receptor alpha (IL11-RA) and dynactin 3 (DCTN3). Using quantitative real time PCR (qPCR) we could demonstrate that IL11-RA is the gene with the highest copy number gain in the cell lines compared to DCTN3 suggesting IL11-RA to be the amplification target. Screening of 20 primary prostate carcinomas by qPCR revealed an IL11-RA copy number gain in 75% of the tumors analyzed. Gain of DCTN3 was only found in two cases together with a gain of IL11-RA. CONCLUSIONS/SIGNIFICANCE: ArrayCGH using longmer oligonucleotide microarrays is feasible for high-resolution analysis of chomosomal imbalances. Characterization of a small gained region at 9p13.3 in prostate cancer cell lines and primary prostate cancer samples by fluorescence in situ hybridization and quantitative PCR has revealed interleukin 11 receptor alpha gene as a candidate target of amplification with an amplification frequency of 75% in prostate carcinomas. Frequent amplification of IL11-RA in prostate cancer is a potential mechanism of IL11-RA overexpression in this tumor type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号