首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
真核生物的基因组较原核生物复杂 ,其基因包含在染色质中 ,基因的表达调控十分精细 .真核生物的染色体由一系列结构与功能独立的单元组成 ,各个单元的基因表达情况各不相同 .各单元间的结构称为边界元件 ,它使一侧的基因免受另一侧调控元件的影响 .这就是限定染色质转录功能区的染色质隔离子 (chromatininsulator) .染色质隔离子是顺式作用的DNA序列 ,它参与更高层次上的基因表达调控 .1 染色质隔离子的发现及生物学功能  早在 1985年 ,人们就在果蝇的染色体 87A7的两侧发现了scs和scs′ .Kellum等作…  相似文献   

2.
Homeobox genes, widely distributed among animal and plant kingdoms, play an important role in developmental process. Several homeobox conserved fragments were amplified by PCR and the flanking regions were also obtained by an LM-PCR procedure. Sequencing and Southern analysis showed that they belong to a homeobox gene family of rice. Six homeobox-containing fragments were mapped on the molecular linkage map of rice. They were located on chromosomes 3, 4 and 7 respectively. It is noteworthy that there are 4 homeobox fragments located on rice chromosome 3 and the result is also consistent with the comparative genomics between rice and maize.  相似文献   

3.
Qi HY  Zhang ZJ  Li YJ  Fang XD 《遗传》2011,33(12):1291-1299
真核基因的表达受到各种顺式调控元件、反式作用因子、染色质DNA以及组蛋白表观遗传修饰等多因素、多层次的调控。染色质三维空间结构的变化在调控真核基因表达方面也发挥了至关重要的作用。染色质构象的变化一方面可以使增强子等调控元件与靶基因相互靠近,从而促进基因表达;同时也可能通过形成空间位阻结构阻碍调控元件作用于靶基因,抑制基因表达。虽然染色质结构变化调控真核基因表达的机制仍缺乏较为精确的分子模型,但在组蛋白修饰、核小体定位、染色体领域以及染色质间相互作用等表观遗传学研究中,已经发现有诸多证据支持染色质构象在真核基因表达调控中的重要地位。文章主要综述了染色质结构及其构象的变化等对真核基因表达调控的影响。  相似文献   

4.
参与发育的基因家族   总被引:20,自引:3,他引:17  
周荣家 《遗传》2001,23(1):86-88
  相似文献   

5.
6.
7.
Wu  Yonghu  Jia  Zhilian  Ge  Xiao  Wu  Qiang 《中国科学:生命科学英文版》2020,63(6):835-844
During development, gene expression is spatiotemporally regulated by long-distance chromatin interactions between distal enhancers and target promoters. However, how specificity of the interactions between enhancers and promoters is achieved remains largely unknown. As there are far more enhancers than promoters in mammalian genomes, the complexities of enhancer choice during gene regulation remain obscure. CTCF, the CCCTC-binding factor that directionally binds to a vast range of genomic sites known as CBSs(CTCF-binding sites), mediates oriented chromatin looping between a substantial set of distal enhancers and target promoters. To investigate mechanisms by which CTCF engages in enhancer choice, we used CRISPR/Cas9-based DNA-fragment editing to duplicate CBS-containing enhancers and promoters in the native genomic locus of the clustered Pcdhα genes. We found that the promoter is regulated by the proximal one among duplicated enhancers and that this choice is dependent on CTCF-mediated directional enhancer-promoter looping. In addition, gene expression is unaltered upon the switch of enhancers. Moreover, after promoter duplication, only the proximal promoter is chosen by CTCF-mediated directional chromatin looping to contact with the distal enhancer. Finally, we demonstrated that both enhancer activation and chromatin looping with the promoter are essential for gene expression. These findings have important implications regarding the role of CTCF in specific interactions between enhancers and promoters as well as developmental regulation of gene expression by enhancer switching.  相似文献   

8.
9.
Animals use diverse sensory stimuli to navigate their environment and to recognize rewarding food sources.Honey bees use visual atributes of the targeted food source,such as its color,shape,size,direction and distance from the hive,and the landmarks around it to navigate during foraging.They transmit the location information of the food source to other bees if it is highly rewarding.To investigate the relative importance of these attributes,we trained bees to feeders in two different experiments.In the first experiment,we asked whether bees prefer to land on(a)a similar feeder at a different distance on the same heading or on(b)a visually distinct feeder located at the exact same location.We found that,within a short foraging range,bees relied heavily on the color and the shape of the food source and to a lesser extent on its distance from the hive.In the second experiment,we asked if moving the main landmark or the feeder(visual target)influenced recruitment dancing for the feeder.We found that foragers took longer to land and danced fewer circuits when the location of the food source,or a major landmark associated with it,changed.These results demonstrate that prominent visual atributes of food sources and landmarks are evidently more reliable than distance information and that foraging bees heavily utilize these visual cues at the later stages of their journey.  相似文献   

10.
INTRODUCTIONThe material dealt with in this paper came from the upper part of the Wu-tsun shale near Liuchingyu.The village is located on the right bank of Yukiang,about 12 km.to the north of Yungchun city.The Wutsun shale consists mainlyof shales and sandstones with a bed of argillaceous limestone in the upper partvarying from a few to 15 meters thick.The bryozoans occur in the uppermostpart of the formation,where the rock contains high iron contents.They are  相似文献   

11.
《Epigenetics》2013,8(9):1261-1270
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

12.
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

13.
Auxiliary splicing signals in introns play an important role in splice site selection, but these elements are poorly understood. We show that a subset of serine/arginine (SR)-rich proteins activate a cryptic 3' splice site in a sense Alu repeat located in intron 4 of the human LST1 gene. Utilization of this cryptic splice site is controlled by juxtaposed Alu-derived splicing silencers and enhancers between closely linked short tandem repeats TNFd and TNFe. Systematic mutagenesis of these elements showed that AG dinucleotides that were not preceded by purine residues were critical for repressing exon inclusion of a chimeric splicing reporter. Since the splice acceptor-like sequences are present in excess in exonic splicing silencers, these signals may contribute to inhibition of a large number of pseudosites in primate genomes.  相似文献   

14.
The 'silent' yeast mating-type loci (HML and HMR) are repressed by sequences (HMLE and HMRE) located over 1 kb from their promoters which have properties opposite those of enhancers, and are called 'silencers'. Both silencers contain autonomously replicating sequences (ARS). Silencer activity requires four trans-acting genes called SIR (silent information regulator). We have identified two DNA binding factors , SBF-B and SBF-E, which bind to known regulatory elements at HMRE. SBF-B binds to a region involved in both the silencer and ARS functions of HMRE, but doesn not bind to HMLE. This factor also binds to the unlinked ARS1 element. SBF-E recognizes a sequence found at both silencers. These results suggest that the two silencers may be composed of different combinations of regulatory elements at least one of which is common to both. Neither factor appears to be a SIR gene product. Hence the SIR proteins may not directly interact with the silencer control sites.  相似文献   

15.
A Winoto  D Baltimore 《Cell》1989,59(4):649-655
T cells expressing either the alpha beta or gamma delta antigen receptor (TCR) are distinct cell lineages. The single locus encoding the TCR alpha and delta genes requires special regulation to avoid alpha gene expression in gamma delta T cells. We show here that the minimal alpha enhancer is active in the gamma delta T cell lineage but gains alpha beta lineage specificity through negative cis-acting elements 3' of the C alpha gene that silence the enhancer in gamma delta T cells. The negative elements at the C alpha locus consist of several silencers that work in an orientation- and distance-independent fashion. These silencers also act on a retroviral enhancer that is normally ubiquitously expressed, restricting its activity to alpha beta cells. The alpha silencers are active in non-T cell lines, suggesting that the decision of a cell to differentiate into the alpha beta T cell lineage may involve specific relief from these silencers. Silencers are likely to be as important as enhancers in establishing lineage-specific gene expression in many systems.  相似文献   

16.
Gohl D  Aoki T  Blanton J  Shanower G  Kappes G  Schedl P 《Genetics》2011,187(3):731-748
Boundary elements or insulators subdivide eukaryotic chromosomes into a series of structurally and functionally autonomous domains. They ensure that the action of enhancers and silencers is restricted to the domain in which these regulatory elements reside. Three models, the roadblock, sink/decoy, and topological loop, have been proposed to explain the insulating activity of boundary elements. Strong predictions about how boundaries will function in different experimental contexts can be drawn from these models. In the studies reported here, we have designed assays that test these predictions. The results of our assays are inconsistent with the expectations of the roadblock and sink models. Instead, they support the topological loop model.  相似文献   

17.
18.
19.
Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.  相似文献   

20.
Peters J 《Genome biology》2000,1(5):reviews1028.1-reviews10284
Recent studies have identified silencers as control elements that may interact with enhancers to regulate the expression of imprinted genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号