首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
重组腺伴随病毒载体介导的hEPO转移及表达   总被引:6,自引:0,他引:6  
为实现人促红细胞生成素 (humanerythropoietin ,hEPO)基因在体内的持续表达 ,构建了携带hEPO的重组腺伴随病毒 (recombinantadeno associatedvirus,rAAV)载体质粒 ,建立了稳定携带hEPO表达盒的rAAV载体细胞株 ,采用“一种辅助病毒感染一个载体细胞株”的rAAV生产策略 ,制备并纯化了携带hEPO的rAAV(rAAV hEPO)。结果表明 ,rAAV介导的hEPO转移能够使hEPO在培养的BHK 2 1细胞中得到有效表达 ;用rAAV hEPO对Balb/c小鼠进行一次肌肉注射 ,可使hEPO在小鼠体内持续表达 10周以上 ,并可明显升高小鼠的红细胞比容  相似文献   

2.
目的:构建 GFE-1多肽与重组人肿瘤坏死子α(rmhTNF-α)融合蛋白(GFE-1-rmhTNF),研究该融合蛋白的体外活性和体内分布.方法:利用基工程方法,将人工合成的编码 GFE-1的寡核苷酸片段连接在 rmhTNF-α序列的3'端,转入大肠杆菌中诱导表达,采用 Q-Sepharose FF 离子层析柱和 SP-Sepharose FF 阳离子层析柱纯化蛋白,SDS-PAGE 和 Western 印迹鉴定,测定该融合蛋白的体外活性,观察其在小鼠体内的分布情况.结果:构建了融合蛋白 GFE-1-rmhTNF,并在大肠杆菌中获得高效表达.体外活性实验显示,GFE-1-rmhTNF 对 L929细胞有明显的杀伤活性;体内分布实验证实,GFE-1-rmhTNF 在小鼠肺组织的富集高肝肾组织.结论:构建了融合蛋白 GFE-1-rmhTNF,可显著杀伤 L929细胞并特异性富集小鼠肺组织.  相似文献   

3.
hK-Fc融合蛋白的改良、表达及其生物活性的分析   总被引:1,自引:0,他引:1  
为了延长人激肽释放酶(hK)的血清半衰期,提高分泌蛋白的产率,制备了重组激肽释放酶-IgG1 Fc融合蛋白(hK'-Fc)。采用PCR扩增hK基因和IgG1的Fc序列,用鼠源信号肽序列替换hK基因原有的信号肽序列,构建改良型融合蛋白hK'-Fc以及天然型融合蛋白hK-Fc的表达载体,转染中国仓鼠卵巢细胞(CHO)细胞,筛选稳定分泌融合蛋白的细胞株,通过Western blotting鉴定信号肽改造效果,利用Protein A+G亲合层析柱纯化融合蛋白,酶学实验检测融合蛋白的体外活性。结果表明:成功构建了pcDNA-hK'-Fc以及pcDNA-hK-Fc重组表达载体;获得了稳定表达融合蛋白的细胞株,产量达11mg/L以上;信号肽改造后融合蛋白的分泌效率提高约5~10倍;融合蛋白能水解其特异性的底物S-2266,具有生物学活性。本研究为进一步探讨融合蛋白的体内半衰期打下了坚实基础,也为研制治疗脑梗塞疗效更好的第二代hK蛋白和其他药用蛋白的改良提供新的线索。  相似文献   

4.
新红细胞生成刺激蛋白(NESP),是重组人红细胞生长素(rh EPO)的一种高糖基化类似物,它含有5个N端糖链和比rhEPO高2倍的唾液酸残基,具有较好的代谢稳定性和3倍于rhEPO的半衰期。在新红细胞生成刺激蛋白(NESP)的基础上,通过NESP的cDNA与人IgG2的铰链区与CH2和CH3的cDNA连接,形成了融合蛋白NESP-Fc,来达到提高NESP半衰期的目的。表达载体的构建、融合蛋白的表达纯化和初步的功能性试验等一系列研究证实,所表达的融合蛋白主要以二聚体形式存在;NESP-Fc能明显促进UT-7细胞的生长和小鼠体内网织红细胞的增殖;在大鼠体内的研究发现其半衰期高达56h;小试规模重组蛋白的表达量在1.4g/L左右。这些研究为该融合蛋白最终实现临床应用和产业化打下了良好的基础。  相似文献   

5.
重组HSA-hG-CSF融合蛋白在毕赤酵母中的表达   总被引:3,自引:0,他引:3  
为了延长G-CSF半衰期,我们利用甲醇酵母表达重组人血清白蛋白融合的集落细胞刺激因子(rHSA-G-CSF)。用PCR方法从人胎肝cDNA文库扩增出HSA cDNA序列,hG-CSFcDNA序列从大肠表达载体中酶切获取。将HSA和hG-CSF两片段连接后,克隆到酵母分泌型表达载体pGENYK中,酶切线性化后原生质体转化导入酵母细胞进行整合。工程菌经发酵灌培养表达,层析法分离纯化融合蛋白。纯化的融合蛋白经Western 印迹分析表明具有HSA和G-CSF的免役原性,体外生物学活性分析表明,同縻尔数的融合表达产物的活性为E.coli表达G-CSF单体的活性的50%以上。体内动物实验研究表明,经HSA融合的G-CSF的半衰期为G-CSF单体的15-20倍。甲醇酵母表达的融合HSA的G-CSF具有比G-CSF更长的半衰期,有良好的临床应用前景。  相似文献   

6.
目的:构建pET32a(+)-hFLext原核表达载体,诱导hFLext蛋白表达、纯化及活性鉴定.方法:以人淋巴细胞cDNA文库为模板,克隆hFlext,构建pET32a(+)-hFLext重组表达载体.转化大肠杆菌BL21,IPTG诱导蛋白表达,镍珠亲合层析纯化蛋白,SDS-PAGE及Western blot鉴定.细胞增殖实验检测其生物学活性.结果:成功克隆获得hFLext,并构建了pET32a(+)-hFLext重组表达载体.在大肠杆菌BL21,经1 mM IPTG 30℃诱导12 h,成功表达Trx-hFLext融合蛋白,主要以包涵体形式存在.经8M尿素变性包涵体蛋白,逐步透析复性,镍珠亲合层析纯化蛋白,SDS-PAGE及Western blot鉴定,成功获得高纯度的Trx-hFLext融合蛋白.细胞增殖实验证实其具有生物学活性,能够有效刺激脐血细胞增殖.结论:成功构建了pET32a(+)-hFLext重组表达载体,表达、纯化了具有生物学活性的Trx-hFLext融合蛋白,为造血干/祖细胞的体外扩增研究奠定了基础.  相似文献   

7.
目的: 原核表达并纯化具有特异性成纤维细胞激活蛋白(FAPα)酶切位点的靶向抗肿瘤GP-CDD-iRGD融合蛋白,利用FAPα的酶切功能切除融合标签,检测其对FAPα阳性肿瘤细胞株的毒性。方法: 设计并合成GP-CDD-iRGD基因,插入pGEX-4T3 载体,构建重组表达质粒,转化至BL21大肠杆菌感受态细胞中,IPTG诱导表达,SDS-PAGE分析重组融合蛋白的表达,Western blot检测融合蛋白的表达,经GST亲和柱纯化融合蛋白后,通过体外细胞毒性试验(MTT法)和细胞凋亡实验评价该融合蛋白的靶向抗肿瘤活性。结果: 成功构建重组原核表达质粒pGEX-GP-CDD-iRGD,可溶性表达相对分子量约为36 kDa的融合蛋白GST-GP-CDD-iRGD,纯化后蛋白纯度约为90%,经MTT实验测定其对FAPα阳性4T1细胞株的ED50约为18.5μmol/L,流式细胞术检测到其对FAPα阳性4T1细胞株具有选择性毒性作用,早期凋亡比例达到约28%。结论: 原核表达的重组融合蛋白GP-CDD-iRGD对FAPα阴性4T1细胞株未显示毒性,而对FAPα阳性4T1细胞株具有显著的促凋亡作用,为进一步研究其在体内的靶向抗肿瘤活性提供了依据。  相似文献   

8.
通过体外和体内活性实验 ,检测在毕赤酵母中的表达、纯化后的鲑鱼降钙素与骨生长肽融合蛋白是否具有抑制破骨细胞和促进成骨细胞活性的作用 ,期望通过这两个方面同时进行骨质疏松症的治疗。利用MTT法检测此融合蛋白在体外对成骨细胞和成纤维细胞增殖的刺激作用 ,利用碱性磷酸酶检测试剂盒与血清钙检测试剂盒检测此融合蛋白在体内对成骨细胞和破骨细胞活性的影响。细胞实验 (体外 )和动物实验 (体内 )其结果都证明表达的融合蛋白既可以抑制破骨细胞的活性 ,又可以促进成骨细胞的活性 。  相似文献   

9.
目的:原核表达重组hLIF融合蛋白并进行诱导表达、纯化及活性鉴定.方法:将hLIF基因克隆至pThioHisA载体,构建融合表达载体pThioHisA-hLIF,转化大肠杆菌BL21(DE3),IPTG诱导表达.表达产物经亲和层析后,Western blot检测目的蛋白的特异性.用小鼠胚胎干细胞脱饲养层培养对纯化后的重组hLIF融合蛋白进行生物活性的鉴定.结果:降低诱导温度和延长诱导时间能增加hLIF融合蛋白的可溶性表达,纯化后的重组蛋白纯度大于95%,Western blot检测显示了良好的特异性.在脱饲养层细胞培养条件下,添加纯化的hLIF融合蛋白能够有效的维持小鼠胚胎干细胞的未分化状态.结论:重组hLIF融合蛋白可在大肠杆菌中高效表达,具有良好的特异性,为干细胞研究及hLIF蛋白的其他功能研究奠定了基础.  相似文献   

10.
生长激素释放激素和人血清白蛋白融合蛋白的克隆表达   总被引:1,自引:0,他引:1  
目的:通过与人血清白蛋白(HSA)融合,延长生长激素释放激素(GHRH)在体内的半衰期。方法:根据毕赤酵母偏爱密码子重新设计GHRH的核酸序列,并通过化学合成和重叠PCR法将GHRH的N端与HSA的C端通过一个11肽的接头连接,获得GHRH和HSA融合的全长基因序列。构建pPIC9-HSA-GHRH表达载体,电击转化毕赤酵母GS115感受态细胞,通过表型筛选和诱导表达实验得到蛋白表达工程菌,对表达产物进行分离纯化和生物学活性分析。结果:克隆了HSA-GHRH融合基因,构建了pPIC9-HSA-GHRH融合表达载体;电击转化后通过表型筛选和诱导表达实验得到蛋白表达工程菌;经分离纯化后,对表达产物的生物学活性分析显示其在体内有促进生长的作用。结论:与人血清白蛋白的融合有效地提高了GHRH的表达水平,并延长了GHRH的半衰期。  相似文献   

11.
The Pichia pastoris expression system was used to produce recombinant human erythropoietin, a protein synthesized by the adult kidney and responsible for the regulation of red blood cell production. The entire recombinant human erythropoietin (rhEPO) gene was constructed using the Splicing by Overlap Extension by PCR (SOE-PCR) technique, cloned and expressed through the secretory pathway of the Pichia expression system. Recombinant erythropoietin was successfully expressed in P. pastoris. The estimated molecular mass of the expressed protein ranged from 32 kDa to 75 kDa, with the variation in size being attributed to the presence of rhEPO glycosylation analogs. A crude functional analysis of the soluble proteins showed that all of the forms were active in vivo.  相似文献   

12.
Erythropoietin is a major regulator of erythropoiesis which maintains the body's red blood cell mass and tissue oxygenation at an optimum level. Recombinant human erythropoietin (rhEPO), which is a widely used therapeutic agent for the treatment of anemia and which represents one of the largest biopharmaceuticals markets, is produced from recombinant Chinese hamster ovary cells. rhEPO is a glycoprotein with complex glycan structure, which is responsible for its therapeutic efficacy, including the in vivo activity and half-life. In order to obtain an optimal and consistent glycoform profile of rhEPO and concurrently maintain a high production yield, various approaches in drug development and cell culture technology have been attempted. Recent advances in rhEPO production are classified into three types: the development of improved rhEPO molecules by protein engineering; improvement of production host cells by genetic engineering; and culture condition optimization by fine control of the production mode/system, process parameters, and culture media. In this review, we focus on rhEPO production strategies as they have progressed thus far. Furthermore, the current status of the market and outlook on rhEPO and its derivatives are discussed.  相似文献   

13.
We have reported previously that recombinant human erythropoietin (rhEPO) produced from Sp2/0-Ag14 transformant had a low biological activity in vivo as compared with other human EPOs. rhEPO from SP2/0 has now been found to have a lower amount of sialic acid and different sugar chains from other hEPOs. This recombinant molecule contains disialobranches as major and complex sugar chains which showed broad peaks on gel-filtration chromatography. These differences may be responsible for its low in vivo bioactivity.  相似文献   

14.
Recombinant human erythropoietin (rhEPO) has been purified to apparent homogeneity from a Chinese hamster ovary cell line expressing a cDNA clone of the human gene. NH2-terminal sequencing of the recombinant hormone indicates that the 27-residue leader peptide is correctly and consistently cleaved during secretion of the recombinant protein into conditioned medium, yielding the mature NH2 terminus (Ala-Pro-Pro-Arg...). Analysis of the COOH terminus of rhEPO by peptide mapping and fast atom bombardment mass spectrometry (FABMS) demonstrates that the arginyl residue predicted to be at the COOH terminus (based on confirmation of both genomic and cDNA sequences) is completely missing from the purified protein. The truncated form of the recombinant hormone, designated des-Arg166 rhEPO, displays an in vivo specific activity of greater than 200,000 units/mg protein. Structural characterization of natural human urinary EPO (uEPO) by peptide mapping and FABMS reveals that the urinary hormone is also missing the COOH-terminal Arg166 amino acid residue, a modification that remained undetected until now. There is no evidence of further proteolytic processing at the COOH terminus beyond specific removal of the Arg166 amino acid residue in either rhEPO or uEPO. On the basis of the FABMS data, we propose that the physiologically active form of the hormone circulating in plasma and interacting with target cells in vivo is des-Arg166 EPO.  相似文献   

15.
In this study, the in vivo pharmacokinetics and pharmacodynamics of a novel recombinant human erythropoietin (rhEPO) Fc fusion protein, rhEPO-Fc, were studied in both rodents and rhesus monkeys. Animal models of anemia induced by irradiation, cyclophosphamide and partial renal ablation were used to evaluate therapeutic effects of rhEPO-Fc. We have demonstrated that serum half-life of rhEPO-Fc was 29.5 to 38.9 h at doses of 8, 25, 80 µg/kg in rhesus monkeys and 35.5 to 43.5 h at doses of 16, 50, 160 µg/kg in rats. In anemia animal models, rhEPO-Fc dose-dependently (7.5–30.0 µg/kg in mice, 5.4–21.4 µg/kg in rats and 5.0–10.0 µg/kg in rhesus monkeys) increased reticulocyte level, followed by an increase of RBC count, hemoglobin and hematocrit levels. At reduced intervention frequency of weekly treatments, rhEPO-Fc showed similar hematopoietic effects as compared with rhEPO given three times a week. These results indicated that rhEPO-Fc could potentially be used in treatment of anemia and warrants future clinical trials.  相似文献   

16.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

17.
A novel recombinant exendin-4 human serum albumin fusion protein (rEx-4/HSA) expressed in Pichia pastoris was prepared and characterized. Ex-4 is a 39-amino acid peptide isolated from the salivary gland of the lizard Heloderma suspectum and is thought to be a novel therapeutic agent for type 2 diabetes. But to gain a continued effect, the peptide has to be injected twice a day owing to its short plasma half-life (t(1/2) = 2.4 h). To extend the half-life of Ex-4 molecule in vivo, we designed a genetically engineered Ex-4/HSA fusion protein. Between Ex-4 and HSA, a peptide linker GGGGS was inserted and the fusion protein was expressed in methylotrophic yeast P. pastoris with native HSA secretion signal sequence. The recombinant protein was secreted correctly and was obtained with high purity (typically > 98%) by a three-step purification procedure. cAMP assay demonstrated that the fusion protein had a bioactivity similar to Ex-4 for interaction with GLP-1 receptors in vitro. Results from oral glucose tolerance test indicated that rEx-4/HSA could effectively improve glucose tolerance in diabetic db/db mice. Pharmacokinetics studies in cynomologus monkeys also showed that rEx-4/HSA had a much longer plasma half-life. Therefore, rEx-4/HSA fusion protein could potentially be used as a new recombinant biodrug for type 2 diabetes therapy.  相似文献   

18.
The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, such as those containing β-mannose (Man) linkages, can elicit an immune response or bind to Man receptors, thus reducing their efficacy. Recent studies have confirmed that P. pastoris has four genes from the β-mannosyl transferase (BMT) family and that Bmt2p is responsible for the majority of β-Man linkages on glycans. While expressing recombinant human erythropoietin (rhEPO) in a developmental glycoengineered strain devoid of BMT2 gene expression, cross-reactivity was observed with an antibody raised against host cell antigens. Treatment of the rhEPO with protein N-glycosidase F eliminated cross-reactivity, indicating that the antigen was associated with the glycan. Thorough analysis of the glycan profile of rhEPO demonstrated the presence of low amounts of α-1,2-mannosidase resistant high-Man glycoforms. In an attempt to eliminate the α-mannosidase resistant glycoforms, we used a systemic approach to genetically knock-out the remaining members of the BMT family culminating in a quadruple bmt2,4,1,3 knock-out strain. Data presented here conclude that the additive elimination of Bmt2p, Bmt3p and Bmt1p activities are required for total abolition of β-Man-associated glycans and their related antigenicity. Taken together, the elimination of β-Man containing glycoforms represents an important step forward for the Pichia production platform as a suitable system for the production of therapeutic glycoproteins.  相似文献   

19.
Pichia pastoris is a methylotropic yeast that has gained great importance as an organism for protein expression in recent years. Here, we report the expression of recombinant human erythropoietin (rhEPO) in glycoengineered P. pastoris. We show that glycosylation fidelity is maintained in fermentation volumes spanning six orders of magnitude and that the protein can be purified to high homogeneity. In order to increase the half-life of rhEPO, the purified protein was coupled to polyethylene glycol (PEG) and then compared to the currently marketed erythropoiesis stimulating agent, Aranesp® (darbepoetin). In in vitro cell proliferation assays the PEGylated protein was slightly, and the non-PEGylated protein was significantly more active than comparator. Pharmacodynamics as well as pharmacokinetic activity of PEGylated rhEPO in animals was comparable to that of Aranesp®. Taken together, our results show that glycoengineered P. pastoris is a suitable production host for rhEPO, yielding an active biologic that is comparable to those produced in current mammalian host systems.  相似文献   

20.
Recombinant human erythropoietin (rhEPO), the prototype erythropoiesis-stimulating agent developed in the 1980s, was among the first recombinant human proteins to be marketed for clinical use in the oncology setting. Anemia is a frequent concern in patients with cancer receiving myelosuppressive chemotherapy and the availability of rhEPO as an alternative to red blood cell transfusions to treat symptomatic anemia created excitement among clinicians, particularly during an era of mounting concern for transfusion-transmissible infections. Early studies of rhEPO for chemotherapy-induced anemia in patients with non-myeloid malignancies showed these agents improved hemoglobin levels and reduced transfusion rates. rhEPO therapy was reported to decrease fatigue and improve quality of life, although the magnitude and clinical meaningfulness of these effects have been debated. More recent clinical trials since 2003 linking rhEPO therapy to increased risk of tumor progression, thrombo-vascular events and mortality prompted implementation of use restrictions to minimize potential for harm. Scientific research to understand the basic mechanisms of the biologic effects of erythropoietin at the cellular receptor and signaling level has revealed pleiotropic cytokine effects extending beyond erythropoiesis regulation. The importance of erythropoietin receptor signaling in normal, non-erythroid tissues and in pre-clinical tumor models has been under intense investigation and scrutiny, as potential mechanisms of the adverse outcomes associated with rhEPO therapy have been debated. Further research will be required to clarify the complex interplay between the diverse hematopoietic and non-hematopoietic effects of erythropoietin in normal and malignant tissues and to optimize the clinical use of rhEPO in the supportive care of cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号