首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中亚热带植被恢复过程中崩岗土壤性质分异特征   总被引:2,自引:1,他引:1  
崩岗是我国南方红壤丘陵山区坡面沟道侵蚀后期发育而成的侵蚀地貌,探讨崩岗系统植被恢复过程中不同部位土壤性质分异特征,对揭示强度侵蚀环境下土壤环境效应以及指导崩岗区生态恢复具有重要借鉴意义。以闽西南长汀县濯田镇黄泥坑崩岗群内植被盖度分别为2%、20%和95%的3处毗邻崩岗为研究对象,研究各崩岗集水坡面、崩壁(顶部、中部及底部)、崩积体(上部和下部)和沟道出口等部位0—20 cm土壤理化性质的分异特征。结果表明:土壤容重、粉粒、pH、速效养分含量均表现为崩岗Ⅲ崩岗Ⅱ≈崩岗Ⅰ,土壤有机碳、全氮、全磷和全钾含量表现为崩岗Ⅲ崩岗Ⅱ≈崩岗Ⅰ。从集水坡面至沟道出口,土壤容重和砂粒含量呈增加→减少→增加趋势,粉粒和黏粒含量呈降低变化趋势,集水坡面和崩积体有机碳、全氮、全磷和全钾含量明显高于其他部位,在崩壁顶部及沟道出口最低。从集水坡面至沟道出口,铵态氮和硝态氮含量呈先增加后减少的态势,速效钾含量呈"V"型变化态势,最低值出现在崩壁底部,速效磷和pH呈增加态势。本研究表明,崩岗系统内土壤结构和土壤养分含量总体水平较差,不同侵蚀部位土壤性质存在明显空间差异,自然植被恢复过程对土壤特性有一定的改良效应。  相似文献   

2.
藏东南色季拉山沟壑区土壤氮素空间分布特征   总被引:8,自引:3,他引:5  
以西藏东南部色季拉山海拔3950—4350 m为研究区,采用30×50 m网格采样法,以地统计学半变异函数为工具,研究了色季拉山森林生态系统沟谷与坡面上土壤氮素空间变异特征及模型。结果表明:土壤全氮、硝态氮和铵态氮含量均表现为0—10 cm10—20 cm,两个层次上空间变异性表现为全氮和铵态氮0—10 cm10—20 cm,而硝态氮表现为10—20 cm0—10cm;不同海拔高度土壤氮含量表现为随着海拔高度的升高而增加,但这种海拔梯度效应并未达显著水平(P0.05);沟谷区土壤氮含量高于坡面,这可能与植被残体在沟谷区的堆积分解促进氮循环有关;土壤全氮、铵态氮和硝态氮均具有中等程度的空间依赖性,其中土壤全氮空间变异符合指数模型,块金值/基台值为50%;土壤铵态氮和硝态氮含量空间变异分布均符合高斯模型,块金值/基台值分别为70.91%和37.45%;该区域土壤全氮、铵态氮和硝态氮含量空间依赖性表现为:硝态氮全氮铵态氮,即土壤硝态氮更易受到空间结构因素的影响,而铵态氮含量空间变化则主要受随机因素的影响。  相似文献   

3.
不同管理方式下橡胶林土壤氮动态特征   总被引:2,自引:0,他引:2  
对西双版纳割胶、未割胶条件下橡胶林种植带土壤及其保护带土壤氮素动态变化特征进行了研究,并比较了不同保护带种植方式(距瓣豆绿肥覆盖与野生杂草覆盖)对土壤氮素动态的影响。结果表明,橡胶林种植带土壤全氮、碱解氮和硝态氮含量低于保护带。橡胶林土壤全氮、碱解氮、铵态氮、硝态氮均呈现明显的动态变化,种植距瓣豆绿肥覆盖与野生杂草生长覆盖的橡胶林土壤氮变化趋势一致。土壤全氮随时间逐渐下降,碱解氮含量先升后降,铵态氮和硝态氮含量变化幅度较大。橡胶林土壤全氮和碱解氮含量呈现表层(0~20cm)>中层(20~40cm)>底层(40~60cm)的趋势,且未割胶处理全氮和碱解氮含量>割胶处理,而保护带为距瓣豆绿肥覆盖的割胶橡胶林>杂草生长覆盖的橡胶林。距瓣豆绿肥覆盖的保护带土壤硝态氮含量高于杂草生长覆盖。碱解氮与铵态氮含量呈显著的负相关、与硝态氮呈显著正相关。割胶橡胶林土壤氮养分含量最低。橡胶林土壤种植豆科距瓣豆绿肥能够改善土壤氮素肥力。  相似文献   

4.
祁连山中段土壤有机碳和氮素的剖面分布   总被引:4,自引:0,他引:4  
以祁连山中段地区主要土壤类型(棕钙土、灰褐土、栗钙土、高山草甸土)为对象,研究了不同土壤剖面上有机碳、全氮、铵态氮和硝态氮含量的分布规律.结果表明:在祁连山中段地区,随剖面深度增加,不同土壤类型的有机碳、全氮、铵态氮和硝态氮含量均逐渐降低,且其有机碳、氮素的累积和分解存在差异.其中,有机碳含量的全剖面平均值在14.01~41.17g·kg-1,大小顺序为灰褐土>高山草甸土>栗钙土>棕钙土;全氮含量在1.28~2.73 g·kg-1,为高山草甸土>灰褐土>栗钙土>棕钙土;铵态氮含量在5.80~8.40 mg·kg-1,为棕钙土>高山草甸土>栗钙土>灰褐土;硝态氮含量在6.57~15.11 mg·kg-1,为栗钙土>高山草甸土>棕钙土>灰褐土;土壤C/N在11.33~19.22,为灰褐土>栗钙土>高山草甸土>棕钙土;硝铵比在1.00~2.69,为灰褐土>栗钙土>高山草甸土>棕钙土.在不同的气候、植被和地形(坡位、坡向等)条件下,同一土壤类型的有机碳和氮素含量有很大差别.土壤有机碳、全氮和铵态氮含量之间存在极显著正相关,而这三者与硝态氮之间相关性不显著.土壤速效钾含量与铵态氮、硝态氮呈极显著正相关,速效磷含量与土壤有机碳、全氮和铵态氮呈极显著、显著正相关,而pH值、全钾、全磷含量与有机碳和氮素之间无明显相关性.  相似文献   

5.
植被恢复过程中芒萁覆盖对侵蚀红壤氮组分的影响   总被引:1,自引:0,他引:1  
氮素是限制陆地生态系统生产力的重要因子。采用时空代换法,以红壤侵蚀区未治理、恢复12年和30年的马尾松林为研究对象,对比分析了林下芒萁覆盖地与裸地表层土壤之间氮同位素、不同形态氮组分含量以及不同组分氮含量所占比例之间的差异。结果表明:在所有马尾松林中,芒萁覆盖增加了表层土壤的全氮含量,δ~(15)N值则比林下裸地显著降低了33. 8%—83.1%(P0.05)。随着恢复年限增加,林下芒萁覆盖地表层土壤δ~(15)N值显著下降,而林下裸露地δ~(15)N值没有显著变化(P0.05)。不同恢复年限马尾松林的芒萁覆盖地表层土壤微生物生物量氮、可溶性有机氮和铵态氮含量显著高于林下裸地(P 0.05),而硝态氮含量则显著低于林下裸地(P0.05)。随恢复年限增加,表层土壤微生物生物量氮、可溶性有机氮、铵态氮含量均呈增加趋势,而硝态氮含量则呈下降趋势,不同形态氮占全氮比例表现为:微生物生物量氮铵态氮可溶性有机氮硝态氮。相关分析表明土壤δ~(15)N值与硝态氮极显著正相关,与其他氮组分极显著负相关(P0.01)。由此可见,与林下裸地相比,芒萁覆盖在植被恢复过程中有助于提高表层土壤中全氮、微生物生物量氮、可溶性有机氮和铵态氮含量,降低硝态氮的淋溶损失风险,促进土壤氮保持和积累,从而有利于退化红壤生态系统的恢复。  相似文献   

6.
同小流域土壤侵蚀一样,小流域土壤氮素随洪流流失也受到植被覆盖度的影响,通常经过调整小流域内土地利用结构以达到控制水土流失.该研究以8.27 km2纸坊沟流域和1:400比例流域模型为研究对象,研究植被覆盖度和综合治理对纸坊沟流域土壤氮素流失的影响.结果表明:在模拟降雨下,当流域植被覆盖度分别为60%、40%、20%和0时,流域模型铵态氮流失量分别为87.08、44.31、25.16和13.71 kg/km2,硝态氮为85.50、74.05、63.95和56.23 kg/km2,全氮为0.81、1.18、1.98和7.51 t/km2;在自然降雨下,1998年与1992年相比,全流域年土壤侵蚀量为1 086 t/km2和1 119 t/km2,氮素流失量为8 758.5和7 562.2 kg,减少了15.8%,其中农地减少了52.0%.流域对降水中的矿质氮具有过滤作用,硝态氮的过滤作用明显高于铵态氮.洪流泥沙中<20 μm微团聚体富集造成了泥沙有机质和全氮的富集.植被覆盖虽能有效地减少流域土壤侵蚀和全氮的流失,却能增加土壤矿质氮的流失.坡地退耕还林草可显著减少流域土壤氮素流失.  相似文献   

7.
植被覆盖度和综合治理对纸坊沟流域土壤氮素流失的影响   总被引:19,自引:0,他引:19  
同小流域土壤侵蚀一样,小流域土壤氮素随洪流流失也受到植被覆盖度的影响,通常经过调整小流域内土地利用结构以达到控制水土流失。该研究以8.27 km2纸坊沟流域和1:400比例流域模型为研究对象,研究植被覆盖度和综合治理对纸坊沟流域土壤氮素流失的影响。结果表明:在模拟降雨下,当流域植被覆盖度分别为60%、40%、20%和0时,流域模型铵态氮流失量分别为87.08、44.31、25.16和13.71 kg/km2,硝态氮为85.50、74.05、63.95和56.23 kg/km2,全氮为0.81、1.18、1.98和7.51 t/km2;在自然降雨下,1998年与1992年相比,全流域年土壤侵蚀量为1 086 t/km2和1 119 t/km2,氮素流失量为8 758.5和7 562.2 kg,减少了15.8%,其中农地减少了52.0%。流域对降水中的矿质氮具有过滤作用,硝态氮的过滤作用明显高于铵态氮。洪流泥沙中<20 mm微团聚体富集造成了泥沙有机质和全氮的富集。植被覆盖虽能有效地减少流域土壤侵蚀和全氮的流失,却能增加土壤矿质氮的流失。坡地退耕还林草可显著减少流域土壤氮素流失。  相似文献   

8.
枣粮间作生态系统土壤氮空间分布特性   总被引:8,自引:1,他引:7  
基于枣粮间作复合生态系统内部异质性,通过在不同位置采样测定,探讨了枣粮间作系统内土壤氮素空间分布特性.结果表明:(1)枣粮间作生态系统中,在小麦收获期和玉米收获期两个时期,土壤全氮和硝态氮含量均存在明显的垂直和水平两个方向空间变异性.而土壤铵态氮含量极低且没有明显的空间变异;(2)与全氮相比,枣粮间作系统中硝态氮空间变异性更强,且随着时间变化其空间分布特性有明显变化;(3)氮素施用量对土壤全氮和硝态氮空间变异有正向作用,而植株对氮的吸收利用可以降低土壤氮素分布空间差异程度.各因子对土壤全氮空间变异影响强弱顺序为氮吸收量>氮素施用量>土壤含水量;对土壤硝态氮空间变异影响强弱顺序为氮素施用量>土壤全氮含量>氮素吸收量>土壤含水量.  相似文献   

9.
研究了高产栽培条件下,不同施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响,同时计算了不同生育阶段土壤氮素的表观盈亏量.结果表明,与氮肥分期施用处理比较,氮肥全部用于拔节期追施处理降低了拔节期之前的土壤硝态氮含量,减少了拔节期之前土壤氮素的表观盈余量,降低了氮素向深层的淋洗;而挑旗期土壤硝态氮含量与氮肥分期施用处理无显著差异,但提高了土壤铵态氮含量;增加了成熟期0~60 cm土壤各土层土壤硝态氮含量和0~20 cm土壤铵态氮含量.氮肥全部用于拔节期追施的两处理间比较,在240 kg·hm-2的基础上降低施氮量至168 kg·hm-2,降低了挑旗期土壤硝态氮和铵态氮的含量,减少了挑旗期到成熟期土壤氮素的亏缺量,也使成熟期土壤硝态氮的含量降低.不同处理间籽粒产量和蛋白质产量无显著差异,施氮量为168 kg·hm-2且全部用于拔节期追施的处理籽粒蛋白质含量最高.  相似文献   

10.
植被类型与坡位对喀斯特土壤氮转化速率的影响   总被引:4,自引:0,他引:4  
土壤氮素转化对于植物氮素营养具有重要作用,尤其是对于受氮素限制的喀斯特退化生态系统。选取植被恢复过程中4种典型喀斯特植被类型(草丛、灌丛、次生林、原生林)和3个坡位(上、中、下坡位)表层土壤(0—15cm)为对象,利用室内培养的方法,研究不同植被类型和坡位下土壤氮素养分与氮转化速率(氮净矿化率、净硝化率和净氨化率)的特征及其影响因素。结果表明,植被类型对土壤硝态氮含量、无机氮含量、氮净矿化率、净硝化率和净氨化率均有显著影响(P0.01),即随着植被的正向演替(草丛—灌丛—次生林—原生林),土壤硝态氮含量、无机氮含量、土壤氮净矿化速率和净硝化速率整体上呈增加趋势,而坡位以及坡位与植被类型的交互作用对上述土壤氮素指标无显著影响(P0.05)。冗余分析结果表明凋落物氮含量、凋落物C∶N比和硝态氮含量对土壤氮转化速率有显著影响,其中凋落物氮含量是影响土壤氮转化速率的主要因子(F=35.634,P=0.002)。可见,尽管坡位影响喀斯特水土再分配过程,但植被类型决定的凋落物质量(如凋落物氮含量等)对喀斯特土壤氮素转化速率的作用更为重要。因此,在喀斯特退化生态系统植被恢复初期,应注重植被群落的优化配置(如引入豆科植物)和土壤质量的改善(如降低土壤C∶N),促进土壤氮素转化及氮素的有效供给。  相似文献   

11.
为了揭示气候变暖背景下高寒灌丛土壤氮转化过程, 该文研究了青藏高原东缘窄叶鲜卑花(Sibiraea angustata)灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应。结果表明: 窄叶鲜卑花灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节, 土壤硝态氮含量呈先增加后降低的趋势, 而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期, 各处理土壤硝态氮含量均显著高于铵态氮含量, 而在生长季末期土壤硝态氮含量均显著低于铵态氮含量, 说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主, 而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和去除植物的响应不同: 增温对硝态氮的影响主要发生在生长季中期和末期, 且因植物处理的不同而有显著差异, 增温仅在生长季中期使不去除植物样方铵态氮含量显著升高。去除植物对土壤硝态氮的影响仅表现在对照样方(不增温), 去除植物显著提高了生长季初期和中期土壤硝态氮含量, 显著降低了生长季末期土壤硝态氮含量; 同时去除植物显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮, 其吸收过程不受土壤增温的影响。  相似文献   

12.
以黄土高原南部17年长期定位试验不同处理土壤为研究对象,研究了不同肥料处理及撂荒条件下土壤氮素矿化特性、灭菌与不灭菌条件下不同肥力土壤对施入外源硝态氮转化的影响.结果表明:氮磷钾化肥和有机肥配施(MNPK)及长期撂荒处理显著提高了土壤有机质和全氮含量以及土壤氮素矿化量和矿化率;氮磷钾化肥(NPK)处理虽然提高了土壤无机氮含量,但对土壤有机质、全氮、土壤氮素矿化量和矿化率的影响相对较小.高温高压灭菌显著增加了土壤铵态氮含量,但对不同处理土壤硝态氮含量无明显影响;在灭菌土壤培养过程中,土壤铵态氮含量呈显著增加趋势.同一土壤类型,不论灭菌与否,培养过程中施入土壤的硝态氮含量保持相对稳定,说明在本研究培养条件下,生物因素和非生物因素对外源硝态氮在土壤中的转化无明显影响.  相似文献   

13.
干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征   总被引:9,自引:0,他引:9  
选取广泛分布于阿拉善干旱荒漠区的白刺、霸王、红砂、沙冬青、沙木蓼、梭梭和驼绒藜7种不同的旱生灌木,研究其根际与非根际土壤各种形态氮素、有机碳的含量特征及土壤pH的变化.结果表明,相对于非根际土壤,根际土壤全氮、铵态氮、硝态氮分别平均高24.9%、24.5%和65.1%,土壤有机碳平均高出18.5%,土壤pH值平均低0.14个单位.根际与非根际土壤的全氮、铵态氮、硝态氮、有机碳和pH之间都呈现出了极显著差异(p<0.01).7种灌木根际土壤全氮、硝态氮和有机碳含量均比非根际土壤含量高.除沙冬青根际铵态氮含量较非根际低以外,其余6种灌木根际土壤铵态氮含量均高于非根际土壤.梭梭的根际土壤pH高于非根际,其它6种灌木均是根际pH低于非根际土壤.在根际与非根际,土壤有机碳与土壤全氮之间均呈显著相关,二者表现为线性关系.而土壤全氮与铵态氮在根际与非根际则均无相关性,全氮与硝态氮在根际和非根际土壤均显著相关,且二者也呈线性相关.  相似文献   

14.
为了揭示气候变暖背景下高寒灌丛土壤氮转化过程, 该文研究了青藏高原东缘窄叶鲜卑花(Sibiraea angustata)灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应。结果表明: 窄叶鲜卑花灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节, 土壤硝态氮含量呈先增加后降低的趋势, 而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期, 各处理土壤硝态氮含量均显著高于铵态氮含量, 而在生长季末期土壤硝态氮含量均显著低于铵态氮含量, 说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主, 而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和去除植物的响应不同: 增温对硝态氮的影响主要发生在生长季中期和末期, 且因植物处理的不同而有显著差异, 增温仅在生长季中期使不去除植物样方铵态氮含量显著升高。去除植物对土壤硝态氮的影响仅表现在对照样方(不增温), 去除植物显著提高了生长季初期和中期土壤硝态氮含量, 显著降低了生长季末期土壤硝态氮含量; 同时去除植物显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮, 其吸收过程不受土壤增温的影响。  相似文献   

15.
土壤中氮素的吸收、转化及含量的变化是影响植被生长的关键因素。为探讨湿地植被不同退化状态对土壤氮组分含量和相关酶活性的影响,以及土壤氮组分含量与相关酶活性之间的关系,以甘南尕海湿地不同植被退化状态样地(未退化CK、轻度退化SD、中度退化MD和重度退化HD)为研究对象,采用野外采样与室内实验相结合的方法,分析了植被不同退化状态下不同形态氮组分(全氮、铵态氮、硝态氮和微生物量氮)含量的变化特征,以及土壤氮转化酶(蛋白酶、脲酶、硝酸还原酶和亚硝酸还原酶)活性之间的相关关系。结果表明:(1)在植被退化状态下,土壤含水量逐渐减小,土壤温度呈先减小后增大的趋势;(2)随着植被退化程度的加剧,硝态氮含量呈增加趋势,而全氮、铵态氮和微生物量氮含量均随退化程度加剧呈减小趋势;土壤蛋白酶活性随退化程度的加剧而减小,脲酶活性呈先减小后增大的趋势,重度退化活性最高,轻度退化最低;硝酸还原酶活性随退化程度的加剧而增加,亚硝酸还原酶活性表现为"升-降-升"的变化趋势,即轻度退化活性最高,未退化和中度退化较低;(3)土壤蛋白酶活性与全氮、铵态氮和微生物量氮呈极显著正相关关系(P < 0.01),与硝态氮含量呈显著负相关关系(P < 0.05);硝酸还原酶活性与蛋白酶活性恰好相反;脲酶活性与微生物量氮含量呈极显著正相关关系(P < 0.01),与全氮含量呈显著正相关关系(P < 0.05);亚硝酸还原酶活性与全氮和铵态氮含量呈极显著正相关关系(P < 0.01),与硝态氮含量呈显著负相关关系(P < 0.05)。综上,在尕海湿地植被退化条件下,土壤氮组分含量增加可以有效提高相关酶活性。  相似文献   

16.
在大田试验条件下,研究了施肥方式(滴灌施肥和沟施)和施氮量(单次每株25、50、75 g)对欧美108杨人工林土壤氮素垂向运移动态的影响.结果表明:不同施肥方式和施氮量下,土壤中铵态氮和硝态氮含量均随土层深度的增加而降低;滴灌施肥下铵态氮和硝态氮主要集中在0~40 cm土层,随时间变化呈先升后降的变化趋势,分别于施肥后第5天和第10 天达到最大值(211.1和128.8 mg·kg-1).沟施下铵态氮和硝态氮主要集中在0~20 cm土层,硝态氮含量随时间呈逐渐增加的变化趋势,于施肥后第20天达到最大值(175.7 mg·kg-1),但铵态氮随时间无显著变化;滴灌施肥下氮素在土壤中的有效时长约为20 d,而沟施下氮素在土壤中有效时长超过20 d.滴灌施肥下,土壤中铵态氮和硝态氮的含量和运移距离均随施氮量的增加而增加;沟施下,施氮量越高土壤中硝态氮含量越高,但对铵态氮含量无显著影响.滴灌施肥下林地土壤中尿素的水解、硝化速率和运移深度均高于沟施,且施氮量越大,氮素在深层土壤的积累量越高.结合欧美108杨根系和土壤氮素分布特征,滴灌施肥能够为更大的细根分布区提供氮素,更适用于人工林培育.当单次施氮量为每株50 g时,既可保证细根主要分布区内有较高含量的氮分布又不会造成淋溶,肥料利用效率可能更高.  相似文献   

17.
氮素形态对樱桃番茄果实发育中氮代谢的影响   总被引:5,自引:0,他引:5  
以樱桃番茄为材料,采用基质 营养液共培养的方法,研究了全硝态氮(NO3-)、铵态氮和硝态氮配施(75%NO3-∶25%NH4+)及全铵态氮(NH4+)营养对樱桃番茄果实氮代谢及硝酸还原酶(NR)和谷氨酰胺合成酶(GS)基因表达的影响.结果表明: 铵态氮和硝态氮配施处理下樱桃番茄的单果质量比全硝态氮处理略有增加,且果实中NH4+、总氨基酸、氮含量和氮素累积量均显著高于全硝态氮处理;全硝态氮及铵态氮和硝态氮配施处理下果实NR活性及其基因表达没有明显差异,但都显著高于全铵态氮处理;铵态氮和硝态氮配施处理下果实GS活性都高于全硝态氮处理.不同形态氮素及配施处理下,同工酶GS1(胞质型GS)和GS2(叶绿体型GS)的表达与GS的活性不一致,说明氮素对GS活性的影响主要发生在转录后水平.  相似文献   

18.
高原鼠兔挖掘活动对土壤中氮素含量的影响   总被引:1,自引:1,他引:1  
本文通过测定不同类型高原鼠兔鼠丘和鼠丘下0 ~ 10 cm 土壤中总氮、铵态氮和硝态氮的含量变化,分析了高原鼠兔挖掘活动对土壤中无机氮含量的影响,并通过测定高原鼠兔鼠丘密度,计算了每只高原鼠兔对氮素循环的贡献。研究结果表明:不同类型鼠丘土壤中总氮含量无明显变化,铵态氮、硝态氮和无机氮含量处理间变化趋势为当年鼠丘>两年鼠丘> 多年鼠丘> 对照。方差分析结果表明,硝态氮含量在5 月时差异显著,当年鼠丘和两年鼠丘显著大于多年鼠丘和对照,无机氮含量在5 月和9 月表现为当年鼠丘显著高于对照。在不同月份,铵态氮含量月间变化趋势为5 ~ 8 月逐渐降低,至9 月略有增加,硝态氮和无机氮含量呈现“高- 低- 高-低- 高”的“W”变化趋势。方差分析结果显示,铵态氮、硝态氮和无机氮含量月间变化显著。不同类型鼠丘下0 ~ 10 cm 土壤中铵态氮、硝态氮和无机氮含量处理间和月份间变化趋势与鼠丘土壤中变化趋势基本一致,但硝态氮和无机氮含量在当年鼠丘中均显著高于对照,且不同月份间铵态氮、硝态氮和无机氮的含量差异显著(P
< 0.05)。每只高原鼠兔挖掘活动所形成的鼠丘土壤中的铵态氮、硝态氮和无机氮分别增加了162.6 mg/ kg、355.1 mg/kg 和497.7 mg/ kg。  相似文献   

19.
以3年生新红星苹果树为试验材料,在春季将稻草苫、农用地毯、透明塑料膜和园艺地布覆盖地表,于夏秋季调查根区土壤硝化-反硝化作用、硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性以及铵态氮、硝态氮、亚硝态氮含量和植株生长的变化.结果表明: 4种覆盖处理均降低了夏季土壤硝化强度和夏秋之交的土壤NiR活性,提高了秋季土壤铵态氮含量以及夏秋之交的土壤反硝化强度、NR活性和铵态氮含量,降低了夏秋季土壤硝化强度、反硝化强度和NR活性的变异系数;稻草苫提高了夏季和秋季土壤反硝化强度与硝态氮含量,降低了夏季土壤NR和NiR活性;在4种处理中,稻草苫覆盖的土壤硝化与反硝化强度及NR活性在整个夏秋季的变异系数最低;农用地毯降低了夏季土壤反硝化强度,提高了夏季土壤NR和NiR活性、夏秋之交土壤硝态氮含量和秋季土壤反硝化强度;透明塑料膜降低了夏季土壤硝态氮含量,提高了夏季土壤亚硝态氮含量、夏秋之交土壤硝态氮含量以及秋季土壤硝化强度和NiR活性;园艺地布提高了夏季土壤反硝化强度、夏秋之交和秋季土壤的硝化强度以及秋季土壤硝态氮含量.4种覆盖处理均促进了植株生长,其中稻草苫和园艺地布促进新梢和干径增粗的效果更显著;4种覆盖处理对夏秋季土壤硝酸盐代谢的影响不同,但对土壤硝酸盐代谢与转化都具有稳定作用,其中稻草苫的稳定效果最好.  相似文献   

20.
川西北高寒草地沙化过程中土壤氮素变化特征   总被引:7,自引:0,他引:7  
蒋双龙  胡玉福  蒲琴  舒向阳  袁铖铭  余倩 《生态学报》2016,36(15):4644-4653
草地沙化是我国最严重的环境问题之一,但关于草地沙化过程中氮素变化特征的研究报道多集中于干旱半干旱地区,而半湿润地区的相关报道还比较缺乏。通过野外调查,研究了川西北半湿润地区高寒沙质草地沙化过程中土壤氮素变化特征。结果表明,草地沙化对0—100cm土层土壤氮素具有显著影响,全氮、碱解氮、铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)和微生物量氮(MBN)均呈现极显著下降的变化特征,极度沙化阶段较未沙化阶段分别减少了73.95%、77.72%、76.75%、79.77%和84.12%。其中,0—20cm土层变化最显著,全氮、碱解氮、NH_4~+-N、NO_3~--N和MBN含量分别减少了86.43%、83.52%、82.11%、88.82%和91.77%。随着土层深度增加,不同程度沙化草地土壤氮素含量及其变化量逐渐减少;草地沙化过程中,不同沙化阶段土壤氮素损失数量不尽相同,其中,以轻度沙化阶段氮素损失最严重,全氮、碱解氮、NH_4~+-N、NO-3-N和MBN含量分别降低了41.18%、35.17%、46.74%、43.46%和46.88%。草地沙化过程中,土壤全氮、碱解氮、NH_4~+-N、NO_3~--N和MBN含量与土壤粉粒、粘粒含量和植被群落盖度均呈极显著正相关特征,与土壤沙粒含量呈极显著负相关特征。研究区土壤氮素损失与风蚀选择性吹蚀土壤粉粒、粘粒及地表植物覆盖状况逐渐变差密切相关,因此该区域治沙的关键是采取措施降低风蚀对地表土壤吹蚀作用,提高沙化草地地表植被覆盖。同时,还应及时对沙化前期阶段及潜在沙化的草地进行生态治理,从而避免草地沙化继续恶化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号