首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weeds are known to cause enormous losses due to their interference in agroecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard the phenomenon of allelopathy, which is expressed through the release of chemicals by a plant, has been suggested to be one of the possible alternatives for achieving sustainable weed management. The use of allelopathy for controlling weeds could be either through directly utilizing natural allelopathic interactions, particularly of crop plants, or by using allelochemicals as natural herbicides. In the former case, a number of crop plants with allelopathic potential can be used as cover, smother, and green manure crops for managing weeds by making desired manipulations in the cultural practices and cropping patterns. These can be suitably rotated or intercropped with main crops to manage the target weeds (including parasitic ones) selectively. Even the crop mulch/residues can also give desirable benefits. Not only the terrestrial weeds, even allelopathy can be suitably manipulated for the management of aquatic weeds. The allelochemicals present in the higher plants as well as in the microbes can be directly used for weed management on the pattern of herbicides. Their bioefficacy can be enhanced by structural changes or the synthesis of chemical analogues based on them. Further, in order to enhance the potential of allelopathic crops, several improvements can be made with the use of biotechnology or genomics and proteomics. In this context either the production of allelochemicals can be enhanced or the transgenics with foreign genes encoding for a particular weed-suppressing allelochemical could be produced. In the former, both conventional breeding and molecular genetical techniques are useful. However, with conventional breeding being slow and difficult, more emphasis is laid on the use of modern techniques such as molecular markers and the selection aided by them. Although the progress in this regard is slow, nevertheless some promising results are coming and more are expected in future. This review attempts to discuss all these aspects of allelopathy for the sustainable management of weeds. Referee: Dr. Amrjits S. Basra, Central Plains Crop Technology, 5912 North Meridian Avenue, Wichita, KS 67204  相似文献   

2.
水稻化感作用及其分子生态学研究进展   总被引:32,自引:2,他引:30  
综述了近年来国际上研究水稻化感作用的新进展,比较分析了当前常用于室内评价水稻化感作用潜力的几种生物测试法的优缺点,指出了琼脂迟播共培法是较为理想的室内生物测试法并已广泛应用于化感作用研究中。在此基础上,分析了水稻化感作用的数量遗传特性及其QTL定位的研究现状;阐明了水稻化感作用的遗传多样性及其分子生态特性;并就当前普遍关注的焦点问题:逆境条件(如低氮或高伴生杂草密度胁迫)常引起水稻化感作用潜力增大的生理过程与分子机制作了阐述。结合近年来应用差异蛋白组学和生物信息学的研究实例,阐明了逆境引起水稻化感作用增强与其酚类合成代谢相关酶蛋白表达丰度增加,萜类合成代谢相关酶蛋白表达丰度下降有关。就究竟什么是水稻的化感物质及其作用方式等问题作了分析与讨论.指出水稻的化感抑草效应是其众多化感物质综合作用的结果,应重视区分化感物质对靶标杂草的原生作用和进入土壤生态系统中经生物转化后的次生作用。根据当前植物化感作用研究的发展趋势,阐明了进一步研究水稻化感作用的焦点问题,提出了水稻化感作用的根际生物学特性与分子生态学机制,是未来国际上竞相角逐的重点研究领域,并认为以现代系统生物学理论为指导,运用基因组学、蛋白质组学和代谢组学等技术方法,是揭示这一分子生态学过程与机制的重要技术选择和优先研究领域。  相似文献   

3.
水稻化感物质抑草作用机理的分子生物学研究   总被引:29,自引:9,他引:20  
水稻化感作用是通过水稻植株体向环境中释放化感物质来实现的.水稻化感物质的主要抑草作用机理有:抑制杂草种子的发芽,影响激素平衡,破坏细胞膜系统的完整性,影响光合作用和呼吸作用,干扰对营养和水分的吸收,影响蛋白质合成和基因表达等.水稻化感作用是由多基因控制的,表现为数量性状.利用分子生物学技术和化感生物检测技术等研究手段检测到了多个水稻化感作用的主效应(QTLs)位点,但不同水稻化感种质其主效应QTLs位点明显不同.通过分子辅助选择和建立近等基因系的方法对检测到的QTLs作进一步的精细定位,最终实现水稻化感抑草有利基因的克隆是今后研究的重要方向。  相似文献   

4.
Rice allelopathy and the possibility for weed management   总被引:1,自引:0,他引:1  
In attempts to control weeds in rice, much effort has been focused on rice allelopathy research for more than 30 years. Among screening methods that have been developed, some estimate the allelopathic potential of various rice cultivars in a limited time and space, which is less costly and can be conducted year round. Rice allelopathy activity is variety dependent and origin dependent, where Japonica rice shows greater allelopathic activity than Indica and Japonica–Indica hybrids. Allelopathic characteristics in rice are quantitatively inherited and several allelopathy‐involved traits have been identified. Numerous phytotoxins such as cytokinins, diterpenoids, fatty acids, flavones, glucopyranosides, indoles, momilactones (A and B), oryzalexins, phenols, phenolic acids, resorcinols and stigmastanols have been identified and determined as growth inhibitors in rice. However, the fate and actual modes of action of these compounds as well as other potent rice phytotoxins in nature are not well understood. The question of which compounds play a major role in rice allelopathy has remained obscure; however, rice allelopathy might be attributable to the interaction of all present allelochemicals. Despite locating genes determining or involving allelopathy in rice having attracted much effort, the introduction of these genes into target rice cultivars has not yet been achieved. Success in breeding new rice cultivars having good weed‐suppressing ability would benefit farmers in rice‐cultivating countries and play an important role in sustainable agricultural production.  相似文献   

5.
Allelochemicals released by rice roots and residues in soil   总被引:7,自引:0,他引:7  
A few rice (Oryza sativa L.) varieties or rice straw produce and release allelochemicals into soil in which interfere with the growth of neighboring or successive plants. Allelopathic rice PI312777 and Huagan-1 at their early growth stages released momilactone B, 3-isopropyl-5-acetoxycyclohexene-2-one-1, and 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone into soil at phytotoxic levels, but non-allelopathic rice Huajingxian did not. Both allelopathic and non-allelopathic rice residues released momilactone B and lignin-related phenolic acids (p-hydroxybenzoic, p-coumaric, ferulic, syringic and vanillic acids) into the soil during residue decomposition to inhibit successive plants. The results indicated that allelochemicals involved in rice allelopathy from living and dead plants are substantially different. Interestingly, the concentrations of the allelochemicals released from the allelopathic rice seedlings in soil increased dramatically when they were surrounded with Echinochloa crus-galli. The concentrations of the allelochemicals were over 3-fold higher in the presence of E. crus-galli than in the absence of E. crus-galli. However, the same case did not occur in non-allelopathic Huajingxian seedlings surrounded with E. crus-galli. In addition to allelochemical exudation being promoted by the presence of E. crus-galli, allelopathic rice seedlings also increased allelochemical exudation in response to exudates of germinated E. crus-galli seeds or lepidimoide, an uronic acid derivative exuded from E. crus-galli seeds. These results imply that allelopathic rice seedlings can sense certain allelochemicals released by E. crus-galli into the soil, and respond by increased production of allelochemicals inhibitory to E. crus-galli. This study suggests that rice residues of both allelopathic and non-allelopathic varieties release similar concentrations and types of allelochemicals to inhibit successive plants. In contrast, living rice plants of certain allelopathic varieties appear to be able to detect the presence of interspecific neighbors and respond by increased allelochemicals.  相似文献   

6.
化感水稻种质资源鉴定及基因定位研究进展与展望   总被引:2,自引:0,他引:2  
稻种资源化感作用的鉴定评价与深入研究是化感水稻品种选育的基础.本文概要介绍了化感水稻种质资源鉴定评价方法、化感作用生理生化机理以及化感特性遗传与基因定位方面的主要研究进展,并进一步讨论了水稻化感作用研究与利用的发展方向.  相似文献   

7.
We have studied on allelopathy of plants and developed methods to identify the effective substances in root exudates, leaf leacheate, and volatile chemicals emitted from plants. We found traditional cover plants that show allelopathic activity are useful for weed control. It could eliminate the use of synthetic chemicals for this purpose. Allelopathy is a natural power of plants to protect themselves by producing natural organic chemicals. Some endemic plants in Asia, already known by farmers in the region, as either cover crops used in intercropping, hedgerow, or agroforestry, were found to possess strong allelopathic abilities. Our group identified several allelochemicals from these plants. These allelopathic cover crops, mostly leguminous plants, provide protein rich food, and grow easily without artificial fertilizers, herbicides, insecticides and fungicides. In this regards, these allelopathic cover crops could save food shortage in rural area, and are useful for environmental conservation. Screenings of allelopathic plants by specific bioassays and field tests have been conducted. Hairy vetch (Vicia villosa) and Velvet bean (Mucuna pruriens) are two promising species for the practical application of allelopathy. An amino acid, L-DOPA, unusual in plants, plays an important role as allelochemical in Velvet bean (Mucuna pruriens). Hairy vetch is the most promising cover plant for the weed control in orchard, vegetable and rice production and even for landscape amendment in abandoned field in Japan. We have isolated "cyanamide", a well known nitrogen fertilizer, from Hairy vetch. This is the first finding of naturally produced cyanamide in the world.  相似文献   

8.
  • Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy.
  • Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus‐galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice).
  • Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus‐galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application.
  • The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop–weed allelopathic interaction.
  相似文献   

9.
Screening methods for the evaluation of crop allelopathic potential   总被引:1,自引:0,他引:1  
There is increasing interest in the development of allelopathic crop varieties for weed suppression. Allelopathic varieties are likely to be able to suppress weeds by natural exudation of bioactive allelochemicals, thereby reducing dependence upon synthetic herbicides. Screening bioassays are essential tools in identifying crop accessions with allelopathic potential. A number of crops have been screened for this allelopathic trait, and key issues in selecting and designing screening bioassays are reviewed. It is recommended that a combination of different bioassays be used in the evaluation of crop allelopathic potential. Laboratory bioassays, field testing, and chemical screening are important steps, and none of them can be precluded if conclusive evidence of crop allelopathy is to be established. More concerted efforts are needed in screening crop germplasm before the development of allelopathic varieties occurs.  相似文献   

10.
Allelopathy in wheat (Triticum aestivum)   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum) allelopathy has potential for the management of weeds, pests and diseases. Both wheat residue allelopathy and wheat seedling allelopathy can be exploited for managing weeds, including resistant biotypes. Wheat varieties differ in allelopathic potential against weeds, indicating that selection of allelopathic varieties might be a useful strategy in integrated weed management. Several categories of allelochemicals for wheat allelopathy have been identified, namely, phenolic acids, hydroxamic acids and short‐chain fatty acids. Wheat allelopathic activity is genetically controlled and a multigenic model has been proposed. Research is underway to identify genetic markers associated with wheat allelopathy. Once allelopathic genes have been located, a breeding programme could be initiated to transfer the genes into modern varieties for weed suppression. The negative impacts of wheat autotoxicity on agricultural production systems have also been identified when wheat straws are retained on the soil surface for conservation farming purposes. A management package to avoid such deleterious effects is discussed. Wheat allelopathy requires further study in order to maximise its allelopathic potential for the control of weeds, pests and diseases, and to minimise its detrimental effects on the growth of wheat and other crops.  相似文献   

11.
水稻化感作用研究综述   总被引:104,自引:6,他引:98  
王大力 《生态学报》1998,18(3):326-334
主要对水稻化感现象发现,化感生物检测,化感物质分离和鉴定,化感种质资源等方面的研究进展了系统的综合论述,在此基础上,进一步对化感作用研究中的主要问题,例如;生物检测手段,化感作用利用途径等进行了分析。并对我国的化感作用研究的存在问题及发展方向作出了论述。  相似文献   

12.
植物化感物质及化感潜力与土壤养分的相互影响   总被引:10,自引:0,他引:10  
植物化感作用与许多生态因子有关.土壤养分缺乏,影响着许多植物化感物质的产生,从而影响植物的化感潜力;反过来,植物化感物质也通过络合、吸附、酸溶解、竞争、抑制等方式影响土壤的养分形态和水平.本文总结了植物化感物质及化感潜力与土壤养分的相互影响,并提出了今后该领域值得进一步研究的问题.包括以下几方面:加强植物化感研究与土壤 植物营养学研究的结合,以更深入地阐明植物化感物质、化感作用与土壤养分变化的关系;加强植物化感研究与生态系统养分循环研究的结合,以类似自然(nature-like)的方式模拟自然界植物所受的养分干,使养分干扰的化感研究结果更加逼真、可靠;加强对养分过量及受污染时植物化感作用的研究,为揭示农业和林业生产中植物的相互作用机制和生物量变化机制提供新的思路,为生态保护提供科学依据.  相似文献   

13.
水稻品种化感潜力的双重评价与筛选   总被引:3,自引:0,他引:3  
以初筛获得的7份水稻品种为材料,用特征次生物质标记法在HPLC上测定化感指数AI值并结合田间小区试验进行双重评价与筛选,得到3份既具高化感指数又具较高田间抗草活性的水稻化感品种(系),它们是:我国台湾品种I-Kung-Pao、Parahainakoru和大陆品种HB-1。它们对无芒稗根长抑制率分别达57%、64%、55%,均超过50%;其化感指数分别是0.61、0.56、0.59,均与美国化感潜力品种PI312777的化感指数0.59相近;结果表明,水稻品种I-Kung-Pao、Parahainakoru和HB-1是我国宝贵的化感品种资源。  相似文献   

14.
茉莉酮酸甲酯对水稻化感物质的诱导效应   总被引:18,自引:3,他引:15  
在室内和田间条件下 ,外源茉莉酮酸甲酯均能显著地诱导水稻化感物质的合成 ,而且这种诱导效应与施用茉莉酮酸甲酯的浓度和诱导时间显著相关。 0 .4 m mol/L浓度和处理后 4 8h,茉莉酮酸甲酯对水稻化感物质的诱导效应最强。同样 ,不同的水稻品种对茉莉酮酸甲酯的诱导响应也有显著差异。水稻化感品种 PI312 777和丰华占在茉莉酮酸甲酯的诱导下能很快合成大量的化感物质 ,而水稻非化感品种华粳籼的化感物质的含量虽也有所增加 ,但达不到能显示化感作用的浓度。进一步实验证明 :茉莉酮酸甲酯在处理 4 8h后虽能诱导水稻品种合成大量的化感物质 ,但这一诱导效应并不能长期维持。研究揭示 :水稻化感物质的合成可在外部因子的作用下动态变化 ,这对揭示和充分利用水稻的化感作用机制有重要意义。  相似文献   

15.
The field of allelopathy is one of the most fascinating but controversial processes in plant ecology that offers an exciting, interdisciplinary, complex, and challenging study. In spite of the established role of soil microbes in plant health, their role has also been consolidated in studies of allelopathy. Moreover, allelopathy can be better understood by incorporating soil microbial ecology that determines the relevance of allelopathy phenomenon. Therefore, while discussing the role of allelochemicals in plant–plant interactions, the dynamic nature of soil microbes should not be overlooked. The occurrence and toxicity of allelochemicals in soil depend on various factors, but the type of microflora in the surroundings plays a crucial role because it can interfere with its allelopathic nature. Such microbes could be of prime importance for biological control management of weeds reducing the cost and ill effects of chemical herbicides. Among microbes, our main focus is on bacteria—as they are dominant among other microbes and are being used for enhancing crop production for decades—and fungi. Hence, to refer to both bacteria and fungi, we have used the term microbes. This review discusses the beneficial role of microbes in reducing the allelopathic effects of weeds. The review is mainly focused on various functions of bacteria in (1) reducing allelopathic inhibition caused by weeds to reduce crop yield loss, (2) building inherent defense capacity in plants against allelopathic weed, and (3) deciphering beneficial rhizospheric process such as chemotaxis/biofilm, degradation of toxic allelochemicals, and induced gene expression.  相似文献   

16.
不同水肥和光照条件对水稻化感特性的影响   总被引:17,自引:5,他引:12  
采用盆栽实验对水稻化感品种华航1号在不同水肥和光照条件下的化感潜力和化感物质进行了研究。结果表明,华航1号在较高水肥条件下化感潜力较强,而在较低水肥条件下化感潜力下降,进一步对华航1号的化感特征物质的含量测定表明,在较低水肥条件下其化感物质没有显著的变化,只是次生物质的种类有所增加,尤其是一些具有抗病功能的次生物质的含量有所增加,在弱光照条件下华航1号的化感特征物质含量比在较强光照条件下要低,而且具有抗病功能的次生物质含量则保持较高水平,结果还发现,不论水、肥或光照条件的变化,华航1号对非伴生杂草的化感潜力都比伴生杂草要强。  相似文献   

17.
小麦是世界第一大粮食作物,在农业生产中占有重要地位.然而,由于人们为保证小麦产量往往施用大量的除草剂和杀菌剂,对环境造成了极大的危害.小麦化感作用是利用小麦活体或残体向环境中释放次生代谢物质对自身或其他生物产生作用,它克服了除草剂和杀菌剂等引起的环境污染问题,具有抑制杂草控制病害的潜力.本文对已有的小麦化感作用的研究进展情况进行了综合评述.其中小麦对杂草、虫害及病害产生防御功能的主要化感物质为异羟肟酸和酚酸类物质.小麦化感物质活性的发挥除了取决于化感物质的种类外,还由小麦自身的遗传因素、环境因素和生物因素的共同作用所决定.小麦化感物质在根际土壤中的滞留、迁移和转化过程、小麦化感作用与土壤生物的关系以及相关的作用机理是小麦化感作用研究的薄弱环节,其研究方法还需进一步探索改进.小麦化感作用在植物保护、环境保护以及作物育种等方面具有广泛的应用前景,促进了小麦抗逆性的增强以及产量和品质的提高.  相似文献   

18.
19.
小麦化感作用研究进展   总被引:31,自引:2,他引:29  
小麦是世界第一大粮食作物,在农业生产中占有重要地位.然而,由于人们为保证小麦产量往往施用大量的除草剂和杀菌剂,对环境造成了极大的危害.小麦化感作用是利用小麦活体或残体向环境中释放次生代谢物质对自身或其他生物产生作用,它克服了除草剂和杀菌剂等引起的环境污染问题,具有抑制杂草控制病害的潜力.本文对已有的小麦化感作用的研究进展情况进行了综合评述.其中小麦对杂草、虫害及病害产生防御功能的主要化感物质为异羟肟酸和酚酸类物质.小麦化感物质活性的发挥除了取决于化感物质的种类外,还由小麦自身的遗传因素、环境因素和生物因素的共同作用所决定.小麦化感物质在根际土壤中的滞留、迁移和转化过程、小麦化感作用与土壤生物的关系以及相关的作用机理是小麦化感作用研究的薄弱环节。其研究方法还需进一步探索改进.小麦化感作用在植物保护、环境保护以及作物育种等方面具有广泛的应用前景,促进了小麦抗逆性的增强以及产量和品质的提高.  相似文献   

20.
Much research on rice allelopathy has been directed toward the selection of allelopathic rice strains and the identification of allelochemicals in rice. This paper briefly summarizes recent progress in the rice allelopathy and focuses on rediscovery of momilactone B as an allelochemical. A large number of rice varieties were found to inhibit the growth of several plant species when grown together under field and/or laboratory conditions. These findings suggest that rice probably produces and releases allelochemical(s) into the environment. The putative compound causing the inhibitory effect of rice was recently isolated from rice root exudates, and the chemical structure of the inhibitor was determined by spectral data as momilactone B. In addition, it has been found that momilactone B is released from rice roots into the neighboring environment, and the release level of momilactone B from rice may be sufficient to cause growth inhibition of neighboring plants. These findings suggest that momilactone B may play an important role in rice allelopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号