首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的建立敏感的SARS小动物模型。方法通过显微注射技术,将编码SARS-CoV细胞受体的人血管紧张素转换酶(hACE2)基因导入小鼠的基因组中制备了hACE2转基因小鼠,在小鼠ACE2(mACE2)启动子的调控下,hACE2蛋白在转基因小鼠的肺脏、心脏、肾脏和小肠表达。我们观察了野生型和转基因小鼠在SARS冠状病毒接种后病原学和病理学方面的反应。结果在接种后第3天和第7天,病毒能够更有效地在转基因小鼠的肺脏复制,而且转基因小鼠出现更严重的肺损伤。肺组织的损伤包括肺间质充血、出血,单核细胞、淋巴细胞浸润及血浆蛋白的渗出,肺泡上皮细胞增生、脱落,此外,在转基因小鼠的某些器官还发现了血管炎、变性和坏死等病理变化。在转基因小鼠的肺上皮细胞、血管内皮细胞和脑神经细胞检测到病毒抗原。结论转基因小鼠比野生型小鼠对SARS病毒更易感,而且表现出更接近SARS患者的病理变化。  相似文献   

2.
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.  相似文献   

3.
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.  相似文献   

4.
《遗传学报》2023,50(2):99-107
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more than 600 million people worldwide. Several organs including lung, intestine, and brain are infected by SARS-CoV-2. It has been reported that SARS-CoV-2 receptor angiotensin-converting enzyme-2 (ACE2) is expressed in human testis. However, whether testis is also affected by SARS-CoV-2 is still unclear. In this study, we generate a human ACE2 (hACE2) transgenic mouse model in which the expression of hACE2 gene is regulated by hACE2 promoter. Sertoli and Leydig cells from hACE2 transgenic mice can be infected by SARS-CoV-2 pseudovirus in vitro, and severe pathological changes are observed after injecting the SARS-CoV-2 pseudovirus into the seminiferous tubules. Further studies reveal that Sertoli and Leydig cells from hACE2 transgenic mice are also infected by authentic SARS-CoV-2 virus in vitro. After testis interstitium injection, authentic SARS-CoV-2 viruses are first disseminated to the interstitial cells, and then detected inside the seminiferous tubules which in turn cause germ cell loss and disruption of seminiferous tubules. Our study demonstrates that testis is most likely a target of SARS-CoV-2 virus. Attention should be paid to the reproductive function in SARS-CoV-2 patients.  相似文献   

5.
SARS coronavirus (SARS-CoV) causes severe acute respiratory tract disease characterized by diffuse alveolar damage and hyaline membrane formation. This pathology often progresses to acute respiratory distress (such as acute respiratory distress syndrome [ARDS]) and atypical pneumonia in humans, with characteristic age-related mortality rates approaching 50% or more in immunosenescent populations. The molecular basis for the extreme virulence of SARS-CoV remains elusive. Since young and aged (1-year-old) mice do not develop severe clinical disease following infection with wild-type SARS-CoV, a mouse-adapted strain of SARS-CoV (called MA15) was developed and was shown to cause lethal infection in these animals. To understand the genetic contributions to the increased pathogenesis of MA15 in rodents, we used reverse genetics and evaluated the virulence of panels of derivative viruses encoding various combinations of mouse-adapted mutations. We found that mutations in the viral spike (S) glycoprotein and, to a much less rigorous extent, in the nsp9 nonstructural protein, were primarily associated with the acquisition of virulence in young animals. The mutations in S likely increase recognition of the mouse angiotensin-converting enzyme 2 (ACE2) receptor not only in MA15 but also in two additional, independently isolated mouse-adapted SARS-CoVs. In contrast to the findings for young animals, mutations to revert to the wild-type sequence in nsp9 and the S glycoprotein were not sufficient to significantly attenuate the virus compared to other combinations of mouse-adapted mutations in 12-month-old mice. This panel of SARS-CoVs provides novel reagents that we have used to further our understanding of differential, age-related pathogenic mechanisms in mouse models of human disease.  相似文献   

6.
Zoonotic severe acute respiratory syndrome coronavirus (SARS-CoV) likely evolved to infect humans by a series of transmission events between humans and animals in markets in China. Virus sequence data suggest that the palm civet served as an amplification host in which civet and human interaction fostered the evolution of the epidemic SARS Urbani strain. The prototypic civet strain of SARS-CoV, SZ16, was isolated from a palm civet but has not been successfully cultured in vitro. To propagate a chimeric recombinant SARS-CoV bearing an SZ16 spike (S) glycoprotein (icSZ16-S), we constructed cell lines expressing the civet ortholog (DBT-cACE2) of the SARS-CoV receptor (hACE2). Zoonotic SARS-CoV was completely dependent on ACE2 for entry. Urbani grew with similar kinetics in both the DBT-cACE2 and the DBT-hACE2 cells, while icSZ16-S only grew in DBT-cACE2 cells. The SZ16-S mutant viruses adapted to human airway epithelial cells and displayed enhanced affinity for hACE2 but exhibited severe growth defects in the DBT-cACE2 cells, suggesting that the evolutionary pathway that promoted efficient hACE2 interactions simultaneously abolished efficient cACE2 interactions. Structural modeling predicted two distinct biochemical interaction networks by which zoonotic receptor binding domain architecture can productively engage hACE2, but only the Urbani mutational repertoire promoted efficient usage of both hACE2 and cACE2 binding interfaces. Since dual species tropism was preserved in Urbani, it is likely that the virus evolved a high affinity for cACE2/hACE2 receptors through adaptation via repeated passages between human and civet hosts. Furthermore, zoonotic SARS-CoV was variably neutralized by antibodies that were effective against the epidemic strain, highlighting their utility for evaluating passive immunization efficacy.  相似文献   

7.
Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.  相似文献   

8.
Zhao P  Qin ZL  Ke JS  Lu Y  Liu M  Pan W  Zhao LJ  Cao J  Qi ZT 《FEBS letters》2005,579(11):2404-2410
SARS-CoV is a newly identified coronavirus that causes severe acute respiratory syndrome (SARS). Currently, there is no effective method available for prophylaxis and treatment of SARS-CoV infections. In the present study, the influence of small interfering RNA (siRNA) on SARS-CoV nucleocapsid (N) protein expression was detected in cultured cells and mouse muscles. Four siRNA expression cassettes driven by mouse U6 promoter targeting SARS-CoV N gene were prepared, and their inhibitory effects on expression of N and enhanced green fluorescence protein (EGFP) fusion protein were observed. A candidate siRNA was proved to down-regulate N and EGFP expression actively in a sequence-specific manner. The expression vector of this siRNA was constructed and confirmed to reduce N and EGFP expression efficiently in both cultured cells and adult mouse muscles. Our findings suggest that the siRNA should provide the basis for prophylaxis and therapy of SARS-CoV infection in human.  相似文献   

9.
The emergence of new viral infections of man requires the development of robust diagnostic tests that can be applied in the differential diagnosis of acute illness, or to determine past exposure, so as to establish the true burden of disease. Since the recognition in April 2003 of the severe acute respiratory syndrome coronavirus (SARS-CoV) as the causative agent of severe acute respiratory syndrome (SARS), enormous efforts have been applied to develop molecular and serological tests for SARS which can assist rapid detection of cases, accurate diagnosis of illness and the application of control measures. International progress in the laboratory diagnosis of SARS-CoV infection during acute illness has led to internationally agreed World Health Organization criteria for the confirmation of SARS. Developments in the dissection of the human immune response to SARS indicate that serological tests on convalescent sera are essential to confirm SARS infection, given the sub-optimal predictive value of molecular detection tests performed during acute SARS illness.  相似文献   

10.
No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals.  相似文献   

11.
Replication of viruses in species other than their natural hosts is frequently limited by entry and postentry barriers. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV) utilizes the receptor angiotensin-converting enzyme 2 (ACE2) to infect cells. Here we compare human, mouse, and rat ACE2 molecules for their ability to serve as receptors for SARS-CoV. We found that, compared to human ACE2, murine ACE2 less efficiently bound the S1 domain of SARS-CoV and supported less-efficient S protein-mediated infection. Rat ACE2 was even less efficient, at near background levels for both activities. Murine 3T3 cells expressing human ACE2 supported SARS-CoV replication, whereas replication was less than 10% as efficient in the same cells expressing murine ACE2. These data imply that a mouse transgenically expressing human ACE2 may be a useful animal model of SARS.  相似文献   

12.
Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.  相似文献   

13.
目的:追踪检测SARS冠状病毒(SARS-CoV)抗体在严重急性呼吸综合征(SARS)患者血清中的产生及其转归规律,为SARS诊断及防治提供依据。方法:对41例临床诊断SARS患者的血清进行了连续3年的检测,分别应用间接免疫荧光(IFA)检测患者血清特异性IgG抗体平均滴度,应用双抗原夹心ELISA法检测患者血清核衣壳蛋白(N蛋白)抗体的平均滴度,绘制消涨曲线,得出消涨规律。结果:应用IFA检测患者血清特异性IgG抗体与应用双抗原夹心ELISA法检测N蛋白抗体所得到的消涨规律不同,前者测得康复者血清IgG抗体滴度维持在较低水平,但后者检测35例康复者血清N蛋白抗体仍维持在较高水平。结论:SARS-CoV的N蛋白是免疫原性较强的抗原,感染3年后仍存在高滴度抗体;抗原夹心ELISA检测SARS-CoV N蛋白抗体的灵敏度较IFA方法高。  相似文献   

14.
The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.  相似文献   

15.
During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.  相似文献   

16.
The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.  相似文献   

17.
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1−/− mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1−/− mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation.  相似文献   

18.
The aetiology of SARS: Koch's postulates fulfilled   总被引:2,自引:0,他引:2  
Proof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca fascicularis). SARS-CoV-infected macaques developed a disease comparable to SARS in humans; the virus was re-isolated from these animals and they developed SARS-CoV-specific antibodies. This completed the fulfilment of Koch's postulates, as modified by Rivers for viral diseases, for SARS-CoV as the aetiological agent of SARS. Besides the macaque model, a ferret and a cat model for SARS-CoV were also developed. These animal models allow comparative pathogenesis studies for SARS-CoV infections and testing of different intervention strategies. The first of these studies has shown that pegylated interferon-alpha, a drug approved for human use, limits SARS-CoV replication and lung damage in experimentally infected macaques. Finally, we argue that, given the worldwide nature of the socio-economic changes that have predisposed for the emergence of SARS and avian influenza in Southeast Asia, such changes herald the beginning of a global trend for which we are ill prepared.  相似文献   

19.
20.
In 2002, severe acute respiratory syndrome (SARS)-coronavirus (CoV) appeared as a novel human virus with high similarity to bat coronaviruses. However, while SARS-CoV uses the human angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry, no coronavirus isolated from bats appears to use ACE2. Here we show that signatures of recurrent positive selection in the bat ACE2 gene map almost perfectly to known SARS-CoV interaction surfaces. Our data indicate that ACE2 utilization preceded the emergence of SARS-CoV-like viruses from bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号