首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
高致病性H5N1亚型禽流感病毒 (AIV) 严重威胁到人类健康,因此研制高效、安全的禽流感疫苗具有重要意义。以我国分离的首株人H5N1亚型禽流感病毒 (A/Anhui/1/2005) 作为研究对象,PCR扩增基质蛋白2 (M2) 和血凝素 (HA) 基因全长开放阅读框片段,构建共表达H5N1亚型AIV膜蛋白基因 M2和HA的重组质粒pStar-M2/HA。此外,还通过同源重组以293细胞包装出表达M2基因的重组腺病毒Ad-M2以及表达HA基因的重组腺病毒Ad-HA。用间接免疫荧光 (IFA) 方法检测到了各载体上插入基因的表达。按初免-加强程序分别用重组质粒pStar-M2/HA和重组腺病毒Ad-HA+Ad-M2免疫BALB/c小鼠,共免疫4次,每次间隔14 d。第1、3次用DNA疫苗,第2、4次用重组腺病毒载体疫苗,每次免疫前及末次免疫后14 d采集血清用于检测体液免疫应答,末次免疫后14 d采集脾淋巴细胞用于检测细胞免疫应答。血凝抑制 (HI) 实验检测到免疫后小鼠血清中的HI活性。ELISA实验检测到免疫后小鼠血清中抗H5N1亚型流感病毒表面蛋白的IgG抗体。ELISPOT实验检测到免疫后小鼠针对M2蛋白和HA蛋白的特异性细胞免疫应答。流感病毒M2与HA双基因共免疫的研究,为研究开发新型重组流感疫苗奠定了基础。  相似文献   

2.
用基因疫苗制备H9亚型禽流感病毒单克隆抗体   总被引:1,自引:0,他引:1  
用H9亚型禽流感病毒(AIV)HA基因反转录cDNA第一链PCR扩增其HA基因,PCR产物与pcDNA3.1( )质粒构建重组质粒作为基因疫苗免疫8周龄Balb/C小鼠,细胞融合后用血凝抑制试验(HI)和ELISA试验检测细胞培养上清,各获得一株阳性细胞株,经3次亚克隆后都能稳定分泌H9AIV特异性抗体。特异性检测与NDV、H5亚型AIV、产蛋下降综合症(EDS76)病毒毒株没有反应,2株单抗经亚型鉴定均为IgG2b,轻链的亚型为kappa链。所获得的单克隆抗体将在禽流感快速诊断和疾病预警监控中发挥重要作用。  相似文献   

3.
利用反向遗传技术产生8基因全禽源流感病毒疫苗候选株   总被引:3,自引:0,他引:3  
利用反向遗传技术将含有A/Chicken/Shanghai/F/98(H9N2)株禽流感病毒(avian influenza virus,AIV)的6个内部基因与H5N1亚型AIV的2个表面基因HA和NA共转染COS-1细胞,产生了6 2全禽源的重配AIV。将H5N1亚型AIV的HA基因经基因突变致弱,然后将A/Chicken/Shanghai/F/98(H9N2)AIV的6个内部基因的cD-NA和以上致弱的禽源HA基因及NA基因的cDNA分别克隆到转录/表达载体pHW2000中,构建成8个转录/表达质粒。将8个质粒共转染COS-1细胞,24h后收获细胞及上清接种SPF鸡胚,72~90h后鸡胚死亡,收取鸡胚尿囊液进行血凝、血凝抑制试验、序列分析、病毒致病性试验和动物免疫保护试验,最终证实产生了致弱的全禽源AIV疫苗候选株。  相似文献   

4.
利用反向遗传学技术构建H5亚型禽流感高产疫苗株   总被引:13,自引:0,他引:13  
采用RT-PCR技术分别扩增了鹅源高产禽流感病毒的6条内部基因片段,近期分离的H5N1亚型禽流感病毒的血凝素基因以及N3亚型参考毒株的神经氨酸酶基因,分别构建了8个基因的转录与表达载体,利用反向遗传学技术拯救出了全部基因都源于禽源的重组流感病毒疫苗株rH5N3。通过对血凝素蛋白HA1和HA2连接肽处的5个碱性氨基酸(R-R-R-K-K)基因缺失与修饰,从而消除了病毒基因的毒力相关序列,拯救的rH5N3疫苗株对鸡和鸡胚均无致病性,病毒在鸡胚尿囊液和细胞培养上清的HA效价得到极大提高,分别为12048和1512。制备的禽流感疫苗免疫动物后4~5周即可诱导产生高效价的HI抗体,鸡免疫后18周依然保持高水平的HI抗体。重组疫苗不论是对于国内早期分离的禽流感病毒A/Goose/Guangdong/1/96还是近期分离的A/Goose/HLJ/QFY/04都能够产生完全的免疫保护作用,免疫鸡攻毒后不发病、不排毒、不死亡。带有N3鉴别诊断标记禽流感疫苗株的研制为H5N1高致病性禽流感的防治提供了新的技术保障。  相似文献   

5.
为了构建更为安全有效能同时抵抗高致病性H5亚型和低致病忡H9亚型禽流行性感冒(禽流感)病毒的基因工程疫苗,将H5和H9亚型禽流感病毒分离株的血凝素(HA)基因,分别由鸡痘病毒早晚期启动子PS和PE/L调控其转求,定向插入鸡痘病毒转移载体p11s中,获得H5A和H9A基因分别处于PS及PE/L启动子转录调控下的重组转移载体p11SH5H9。以FuGene^TM6转染法将p11SH5H9转染至已感染鸡痘病毒282E4疫苗株(wt-FPV)的鸡胚成纤维细胞(CEF)中。p11SH5H9与wt—FPV基因组DNA之间的同源重组产生了重组鸡痘病毒rFPV11SH5H9。通过在含X-gal的营养琼脂上连续挑选蓝色病毒蚀斑获得并纯化rFPV-11SH5H9。以间接免疫荧光法试验证实,纯化的rFPV-11SH5H9感染的CEF能同时表达H5A和H9A。初步的动物试验表明,用10^5PFU的rFPV-11SH5H9免疫无特定病原体(SPF)鸡,免疫后血凝抑制(HI)抗体监测阳性率均为100%(8/8);该重组病毒能显著抑制H9亚型AIV滴鼻、点眼后7日龄SPF鸡从气管和泄殖腔排毒,同时也能抵抗H5亚型AIV肌肉注射后对7日龄SPF鸡致死性攻击,保护率均为100%,显示出一定的应用前景。  相似文献   

6.
研究去除重组鸡痘病毒中的报告基因,构建一株只含目的基因的重组毒。将H5亚型AIV的HA基因作为靶基因,两侧含loxP序列的GFP表达盒插入鸡痘病毒重组臂基因构建了转移质粒载体,将其与脂质体混合转染CEF细胞,获得了表达H5和GFP的鸡痘病毒重组体。通过二次转染,利用Cre酶自动敲除重组病毒中的GFP基因,最终获得了只含H5血凝素基因表达盒的重组鸡痘病毒。免疫荧光和病毒滴度测定结果表明,经过连续传代后重组病毒仍然稳定复制并表达H5血凝素。用105PFU和2×105PFU rFPV H5免疫SPF鸡,28d后,免疫组鸡抗体平均滴度(HI)分别达到4log 2和4.5log 2,结果表明,H5HA基因重组病毒能刺激鸡群产生较高特异抗体。  相似文献   

7.
为了构建更为安全有效地抵抗高致病性H5亚型禽流感病毒的基因工程疫苗,将H5亚型禽流感病毒分离株的血凝素(HA)基因和神经氨酸酶(NA)基因定向插入鸡痘病毒转移载体p11S中,H5A和NA基因的启动子分别为PS和PE/L,获得用不同的启动子启动不同的外源基因且两基因盒方向为背向串联的重组转移载体p11SH5ANA。将p11SH5ANA转染至已感染鸡痘病毒282E4疫苗株(wt-FPV)的鸡胚成纤维细胞(CEF)中。p11SH5ANA与wt-FPV基因组DNA之间的同源重组产生了重组鸡痘病毒rFPV-11SH5ANA。通过在含X-Gal的营养琼脂上连续挑选蓝色病毒蚀斑,获得纯化的重组病毒。经传代证实该重组病毒具有良好的遗传稳定性。用105PFU的rFPV-11SH5NA免疫无特定病原体(SPF)鸡,能激发机体产生有效的血凝抑制(HI)抗体。初步的动物试验表明,该重组病毒能使经肌肉注射攻毒的SPF鸡抵抗H5亚型AIV的致死性攻击,保护率为100%,显示出一定的应用前景。  相似文献   

8.
用反向遗传操作技术产生致弱的H5亚型重组流感病毒   总被引:19,自引:3,他引:16  
选择一株鹅源H5N1亚型禽流感病毒 (AIV) ,缺失其HA基因裂解序列的 4个碱性氨基酸、使HA裂解模式由高致病性的PQRERRRKKR↓GL突变为低致病性的PQRESR↓GL ,将修饰的HA基因克隆入转录 表达载体pHW2 0 0 0、构建质粒pHW5 2 4_HA ,将该毒株和H9N2亚型毒株的NA全基因分别克隆入pHW2 0 0 0 ,构建质粒pHW5 0 6_NA和pHW2 0 6_NA。将pHW5 2 4_HA与pHW5 0 6_NA或pHW2 0 6_NA组合、均用A WSN 33(H1N1)提供 6个内部基因 ,两个组合的 8个质粒分别共转染COS_1细胞 ,产生了H5N1和H5N2两个亚型的基因重排病毒。通过在鸡胚中的连续传代和适应 ,2个重组病毒血凝价上升到 1∶2 9、表面基因稳定、对 6周龄SPF鸡不表现致病性 ,H5N2重组病毒对鸡胚的毒力低于H5N1病毒。这种尝试证明反向遗传操作技术是研究AIV致病性和构建疫苗候选株的有用工具  相似文献   

9.
设计带有BsmBI、BsaⅠ或AarⅠ酶切位点的引物,用RT PCR扩增H9N2亚型禽流感病毒(AIV)的8个基因全长片段,克隆入双向转录/表达载体pHW2000,并在PB2、PB1和NA基因中共引入了3个沉默突变标签.将其2个表面基因(HA和NA基因)加上任意1个内部基因,而其它5个内部基因来自A/WSN/33,进行了6种3+5组合形式的基因重排,把相应组合的转录/表达质粒共转染COS-1细胞,均产生了预期组合、有感染性的H9N2亚型流感病毒,表明亲缘关系遥远的流感病毒可以互相获取基因片段产生重组病毒,提示表面结构基因和单个内部基因不足以限制H9N2 AIV在哺乳动物细胞上的宿主范围,同时也验证了构建的8个转录/表达载体均能有效工作,为进一步研究H9N2亚型AIV基因结构与功能、AIV与宿主之间的关系打下了基础.  相似文献   

10.
网状内皮增生病病毒感染SPF鸡对疫苗免疫反应的抑制作用   总被引:10,自引:1,他引:9  
我国鸡群中网状内皮增生病病毒(REV)感染已相当普遍,但对其造成的实际危害却不太清楚.本研究结果表明,1日龄SPF鸡感染REV会显著抑制对新城疫病毒(NDV)和禽流感病毒(AIV,H5和H9)疫苗的免疫反应.1周龄用相应灭活疫苗免疫后3周、4周和5周,REV感染组对不同病毒疫苗免疫后的HI效价显著低于对照组.高剂量REV感染组的抑制作用大于低剂量感染组,但统计学差异不显著.REV感染可造成中枢免疫器官萎缩,REV感染组的胸腺、法氏囊与体重比显著低于对照组.本研究证明了,REV早期感染会干扰鸡群对NDV、AIV的免疫效果,特别是会严重干扰对AIV疫苗的免疫效果.  相似文献   

11.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

12.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

13.

Background

Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.

Methodology/Principal Finding

Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.

Conclusion and Significance

Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals.  相似文献   

14.
为了研究 H5N1 DNA 疫苗对小鼠和鸡的保护效率,用 H5N1 禽流感病毒 HA DNA 疫苗免疫 BALB/c 小鼠和 SPF 鸡 . 小鼠和鸡分别经电穿孔和肌肉注射免疫两次,间隔为 3 周 . 二次免疫后,用致死量的同源病毒进行攻毒实验 . 空白对照组在攻毒后全部死亡,而经电穿孔免疫的小鼠和鸡均获得了完全的保护,并能有效地抑制病毒在小鼠肺脏和鸡泄殖腔的繁殖 . 同时,电穿孔免疫的小鼠和鸡均产生了高水平的特异性抗体 . 经电穿孔免疫的小鼠攻毒后 CTL 反应明显加强 . 这些结果表明, HA DNA 疫苗能有效地保护小鼠和鸡对禽流感病毒的感染,同时也表明电穿孔免疫是 DNA 疫苗免疫的有效途径之一 .  相似文献   

15.
Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.  相似文献   

16.

Background

Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity.

Methodology/Principal Findings

In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited.

Conclusions/Significance

Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles.  相似文献   

17.
Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 μg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.  相似文献   

18.

Background

Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1.

Methodology/Principal Findings

A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose.

Conclusions/Significance

The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry.  相似文献   

19.
Song H  Nieto GR  Perez DR 《Journal of virology》2007,81(17):9238-9248
In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号