首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
表达PVY和PLRV双价外壳蛋白基因马铃薯的抗病性研究   总被引:5,自引:0,他引:5  
表达马铃薯Y病毒(PVY)和马铃薯卷叶病毒(PLRV)双价外壳蛋白基因的马铃薯(Solanum tubero-sum L.)栽培品种“Favorita”和“虎头”,经摩擦接种PVY和用桃蚜接种PLRV后,观察症状并用ELISA测定病毒滴度。结果表明,两个品种转双价CP基因的各株系,接种病毒后表现无症状或症状轻微,其中PVY和PLRV平均滴度均较不转基因对照植株低。不同品种对PVY和PLRV的抗性比较表明,转双价CP基因的“Favorita”对PVY抗性较明显,而转双价CP基因的“虎头”则对PLRV抗性较对PVY抗性明显。不同转基因株系抗病毒水平不同。“Favorita”9个转双价CP基因株系中有6个株系PVY滴度较未转基因对照降低52.5%~90.0%,而“虎头”7个转双价CP基因株系中有4个株系PLRV含量较对照降低53.0%~98.0%。在抗性株系中还出现一些抗1种病毒或抗2种病毒的抗性较强的单株。  相似文献   

2.
利用依据马铃薯Y病毒(PVY)pl基因序列设计合成的一对引物YP1,YP2,以带毒烟草总RNA为模板,通过RT-PCR方法扩增得到了0.83kb的目的条带,测序结果表明为PVY pl基因。通过对PVY P1蛋白氨基酸序列分析发现PVY不同分离物间P1蛋白氨基酸序列存在明显差异,氨基酸序列同源性在64%~94%间。依据P1蛋白氨基酸序列建立了PVY系统关系树并对PVY进行了类型分析。  相似文献   

3.
利用依据马铃薯Y病毒(PVY)p1基因序列设计合成的一对引物YP1,YP2,以带毒烟草总RNA为模板,通过RT-PCR方法扩增得到了0.83kb的目的条带,测序结果表明为PVY p1基因。通过对PVY P1蛋白氨基酸序列分析发现PVY不同分离物间P1蛋白氨基酸序列存在明显差异,氨基酸序列同源性在64%~94%间。依据P1蛋白氨基酸序列建立了PVY系统关系树并对PVY进行了类型分析。  相似文献   

4.
邹文超  沈林林  沈建国  蔡伟  詹家绥  高芳銮 《遗传》2017,39(10):918-929
为实现马铃薯Y病毒(Potato virus Y, PVY)常见株系的快速鉴定,本文以PVY的P1HC-proVPgCP 4个基因为研究对象建立了快速准确的多基因联合体系。根据基因的不同组合建立5个不同数据集,分别进行系统发育分析,并通过贝叶斯标签关联显著性(Bayesian tip-association significance, BaTS)分析各数据集中代表分离物与株系的关联性,以确定实现PVY快速鉴定的最佳组合。不同数据集的系统发育及BaTS分析结果显示,除了联合P1VPgCP 3个基因数据集外,其他4个数据集均无法实现PVY常见株系的准确鉴定。采用不同建树方法对联合P1VPgCP 3个基因数据集比较分析显示,基于ML法和NJ法的系统发育树在拓扑结构上基本一致,均优于基于贝叶斯算法的最大分支置信(maximum clade credibility, MCC)树。同时,以HLJ26分离物为研究对象,对建立的多基因联合体系进行实际应用,结果显示该分离物与PVYNTN-NW株系的3个分离物SYR-Ⅱ-2-8、SYR-Ⅱ-Be1和SYR-Ⅱ-DrH以高置信值聚为一亚簇,表明该分离物可能属于PVYNTN-NW株系(SYR-Ⅱ型)。重组分析显示,HLJ26基因组存在4个潜在的重组信号,分别位于P1、HC-pro/P3、VPg和CP的5°-末端,与PVYNTN-NW株系(SYR-Ⅱ型)的重组位点相一致,表明其属于PVYNTN-NW株系(SYR-Ⅱ型)。同时,应用多重RT-PCR成功扩增出约为1000 bp和400 bp的2个特异性片段,与PVYNTN-NW株系(SYR-Ⅱ型)的特异条带大小相一致。这些结果进一步支持了多基因联合体系的鉴定结果。联合P1VPgCP 3个基因数据集系统发育分析,可以实现PVY常见株系的准确鉴定。  相似文献   

5.
马铃薯Y病毒福建分离物P1基因的分子变异和结构特征   总被引:1,自引:0,他引:1  
史凤阳  高芳銮  沈建国  常飞  詹家绥 《遗传》2014,36(7):713-722
为揭示马铃薯Y病毒(Potato virus Y, PVY)P1基因的分子变异及结构特征, 并查明福建分离物P1基因的变异来源。文章设计一对简并引物从感染PVY的马铃薯病叶扩增、克隆获得福建分离物P1基因的cDNA全长序列, 分析其核苷酸序列和氨基酸序列的特征, 并采用贝叶斯法重建P1基因的系统发育树。结果显示, 12个福建分离物均成功扩增出预期大小(约915 bp)的特异性片段, P1基因的核苷酸序列与已报道的PVY不同株系的核苷酸序列一致性为73%~99%; QK44、XT02、XT08、LH05分离物的309 nt位置均检测到一个强烈的重组信号。12个PVY分离物中, P1蛋白有85个变异的氨基酸位点, 表明其高度变异; P1蛋白的第41~275位是一个高度保守的结构功能域, 含有3个保守的活性位点(H192、D201、V235); 系统发育分析显示, 福建分离物形聚为3种不同的簇, 其对应的卷曲结构(Coiled-coil domain)和空间结构也不相同, 表明不同株系型的P1基因在系统发育关系上分化较大。该研究结果表明PVY P1基因在核苷酸序列、氨基酸序列以及空间结构具有高度变异性, 但行使P1蛋白功能的活性位点所在的氨基酸(H192、D201和V235)均高度保守; 福建分离物P1基因的变异源主要来自碱基突变和基因重组。  相似文献   

6.
摘要:【目的】探究垂体瘤转化基因1对乙型肝炎病毒复制的影响。【方法】通过酶联免疫吸附反应、实时定量PCR、双荧光报告系统检测、免疫印迹分析,研究垂体瘤转化基因1对乙型肝炎病毒的复制影响及其机制。【结果】发现垂体瘤转化基因1 促进乙型肝炎病毒复制,是通过降低P53的水平,削弱P53对HBV增强子I和II的抑制作用实现的。【结论】垂体瘤转化基因1通过抑制P53,促进乙型肝炎病毒的复制。  相似文献   

7.
常飞  邹文超  高芳銮  沈建国  詹家绥 《遗传》2015,37(3):292-301
文章以马铃薯Y病毒(Potato virus Y, PVY) P3和pipo基因为分子标记,比较分析烟草和马铃薯两个寄主的PVY遗传多样性和群体分化,并评估突变、选择、基因流等遗传力所起的作用。通过P3和pipo基因计算获得的烟草和马铃薯群体分化指数FST分别为0.116和0.120,且统计检验差异显著,表明烟草和马铃薯寄主的PVY之间中度分化。变异分析结果显示,烟草分离物P3和pipo基因的核苷酸序列一致性分别为85.2%~100%和76.5%~100%,而马铃薯分离物的P3和pipo基因的核苷酸序列一致性分别为95.7%~100%和93.0%~100%,表明烟草PVY变异程度高于马铃薯。同时,P3基因内检测到大量的净化选择位点,表明该基因大部分位点的变异为有害突变,在进化过程中被剔除。此外,P3基因内还检测到两个显著正向选择位点,表明这两个位点的变异为有益突变,有利于病毒的生存竞争。在pipo基因中未检测到显著的选择位点,表明该基因上的变异基本不受自然选择影响。通过P3和pipo基因计算烟草和马铃薯群体间的基因流Nm值分别为1.91和1.83,表明这两个群体间存在较强的基因交流。以上结果表明,来源于烟草和马铃薯寄主的PVY遗传差异显著,突变、自然选择以及基因流都影响两者的遗传多样性及遗传分化程度。  相似文献   

8.
改造的马铃薯Y病毒复制酶基因介导高度抗病性   总被引:15,自引:0,他引:15  
提取马铃薯Y病毒中国分离株(PVY—c)的mRNA作为模板,随机六聚脱氧核苷酸和寡聚dT为引物合成了单链cDNA。通过聚合酶链式反应(PcR)获得了PVY—C的核内含体b(Nib)全长cDNA克隆。在对其进行全序列分析的基础上,构建了PVY—CNIb基因全长.5’端缺失381个碱基和Nib反义RNA三种不同形式高等植物表达载体。在土壤农杆菌LBA4404的介导下,转化烟草生产品种NC89,获得了所有三种表达载体的转基因植株。通过分子生物学检测和抗性分析发现不同形式的Nib基因序列的转基因植株对马铃薯Y病毒表现不同程度的抗性。其中,以5’端缺失的Nlb的基因转化植株表现最好,从总共20个这类转化株系中筛选到4个株系至少在100μg/m1 PVY—C接种浓度下,表现完全的抗病效果。从总共39个全长Nib基因转化株系中,仅有一个株系,在100μg/ml PVY—c的攻毒接种下具有完全的抗病性。所有33个Nib基因反义RNA的转化植株中,无一株系表现完全的抗病效果,但是有部分株系能不同程度地延缓或减轻发病程度,并有部分植株在发病后50d左右有恢复健康的趋势。虽然能够在上述3种形式的Nib基因序列的转基因植物中检测到相应的RNA的转录产物,但是均未能检测到其相应的蛋白表达产物。  相似文献   

9.
为揭示马铃薯Y病毒(Potato virus Y, PVY) pipo基因的分子变异和结构特征, 文章根据文献报道的马铃薯Y病毒属(Potyvirus) pipo 基因保守区序列设计一对简并引物, 从感染PVY的马铃薯病叶中克隆获得pipo基因的cDNA全长序列, 分析其核苷酸序列和氨基酸序列的特征, 并基于氨基酸序列使用贝叶斯法重建了Potyvirus的系统发育树。结果显示:20个PVY分离物成功扩增出预期大小(约235 bp)的特异性片段, 其核苷酸序列与已报道的其它PVY 株系的pipo基因核苷酸序列一致性均在92%以上; 5′端均含有典型的G1-2A6-7 基序(motif), 无碱基插入/缺失, 所有的核苷酸变异都是碱基置换, 共发现13个多态性位点, 其中4个简约信息位点, 9个单一变异位点, 表明该基因高度保守, 但不同分离物也存在一定的分子变异; PIPO蛋白理论等电点11.26~11.62, 无信号肽和跨膜区, 是可溶的亲水性蛋白; 整个蛋白含有3个保守区, 其中位于10~59aa的基序最为保守。该蛋白主要定位于线粒体中, 可能是线粒体导肽。系统发育分析结果显示, 源于PVY不同株系优先相聚成簇, 而向日葵褪绿斑驳病毒(Sunflower chlorotic mottle virus, SuCMoV)与辣椒重花叶病毒(Pepper severe mosaic virus, PepSMV)的亲缘关系较PVY相比更近, 与前人的结果相一致, 表明PIPO蛋白可以作为研究Potyvirus系统发育关系的新的分子标记。  相似文献   

10.
马铃薯Y病毒p1基因的克隆与序列分析   总被引:1,自引:0,他引:1  
利用依据马铃薯Y病毒(PVY)pl基因序列设计合成的一对引物YPI,YP2,以带毒烟草总RNA为模板,通过RT-PCR方法扩增得到了0.83kb的目的条带,测序结果表明为PVY pl基因.通过对PVY P1蛋白氨基酸序列分析发现PVY不同分离物间P1蛋白氨基酸序列存在明显差异,氨基酸序列同源性在64%-94%间.依据Pl蛋白氨基酸序列建立了PVY系统关系树并对PVY进行了类型分析.  相似文献   

11.
Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance conferred by Ry genes.  相似文献   

12.
13.
14.
Plants of several potato clones with major gene resistance to potato virus Y (PVY) developed necrotic local lesions and systemic necrosis after manual inoculation with common (PVYo) or veinal necrosis (PVYN) strains of the virus. The clones reacted similarly, although their resistance genes are thought to be derived from four different wild species of Solarium. Mesophyll protoplasts from each clone became infected when inoculated with RNA of PVYo by the polyethylene glycol method. The proportion of protoplasts infected, assessed by staining with fluorescent antibody to virus particles, was similar to that of protoplasts of susceptible potato cultivars. In contrast, plants of potato cultivars Corine and Pirola, which possess gene Ry from S. stoloniferum, developed few or no symptoms when manually inoculated or grafted with PVYo. Moreover, only very few protoplasts of these cultivars produced virus particle antigen after inoculation with PVYo RNA. The extreme resistance to PVY of cvs Corine and Pirola was therefore expressed by inoculated protoplasts whereas the resistance of the necrotic-reacting potato clones was not.  相似文献   

15.
The reaction of several cultivated potato varieties (Solarium tuberosum L.) to three strains of tobacco etch potyvirus (TEV-F, TEV-Mex21 and TEV-ATCC) and the reaction of several pepper lines (Capsicum annuum L. and C. chinense L.) to two strains of potato Y potyvirus (PVYO and PVYN) and one strain of potato A potyvirus (PVA-M) was tested. The potato varieties included in this study carried resistance genes against PVY, PVA and potato V potyvirus, but all were susceptible to TEV and developed mottle and mosaic symptoms. TEV was readily transmitted by mechanical inoculation from tobacco and potato to potato, whereas transmission from pepper to potato occurred infrequently. TEV was transmitted through potato tubers, and from pepper to potato plants by aphids. Lack of detectable systemic infection following graft-inoculation indicated extreme resistance to PVYO and PVA in several pepper lines. No pepper line was systemically infected with PVYN following mechanical inoculation (graft-inoculation was not carried out with PVYN). The development of necrotic lesions following mechanical and graft-inoculation indicated hypersensitive response to PVYO in several pepper lines which resembled the resistance responses to these potyvirus strains in potato. Results of this study together with previous work indicate that C. annuum cv. Avelar is resistant to four potyviruses [PVY, PVA, pepper mottle potyvirus (PepMoV) and some isolates of TEV]; C. annuum cv. Criollo de Morelos and C. chinense PI 152225 and PI 159236 are resistant to three potyviruses (PVY, PepMoV and PVA; and PVY, PepMoV and TEV, respectively); C. annuum 9093–1 and 92016–1 are resistant to PVY and PepMoV; and C. annuum cv. Jupiter and C. annuum cv. RNaky are resistant to PVYN and PVA.  相似文献   

16.
Resistance to potato leafroll virus (PLRV), potato virus Y (PVYo) and potato virus X (PVX) was studied in symmetric and asymmetric somatic hybrids produced by electrofusion between Solanum brevidens (2n=2×=24) and dihaploid S. tuberosum (2n=2×=24), and also in regenerants (B-hybrids) derived through protoplast culture from a single somatic hybrid (chromosome number 48). All of the somatic hybrids between 5. brevidens and the two dihaploid lines of potato cv. Pito were extremely resistant to PLRV and PVYoand moderately resistant to PVX, irrespective of their chromosome number and ploidy level (tetraploid or hexaploid). Most (56%) of the asymmetric hybrids of irradiated S. brevidens and the dihaploid line of potato cv. Pentland Crown (PDH40) had high titres of PVYosimilar to those of PDH40, whereas the rest of the hybrids had PVYotitres less than a tenth of those in PDH40. Three B-hybrids had a highly reduced chromosome number (27, 30 and 34), but were however as resistant to PLRV, PVYoand PVX as 5. brevidens. Two asymmetric hybrids and one B-hybrid were extremely resistant to PLRV but susceptible to both PVY and PVX. The results suggested that resistance to PLRV in 5. brevidens is controlled by a gene or genes different from those controlling resistance to PVY and PVX, and the gene(s) for resistance to PVY and PVX are linked in S. brevidens.  相似文献   

17.
Production of monoclonal antibodies for the detection of potato virus Y   总被引:1,自引:0,他引:1  
Monoclonal antibodies (McAb) were obtained to potato virus Y (PVY) after immunisation of BALB/c mice with purified PVY, tobacco necrotic strain (PVYn). Spleen cells from a mouse showing a high serum titre were used for fusion with X63NS1 myeloma cells. Hybridomas were selected in medium containing HAT. Culture supernatants were screened for antibody production against PVY, ordinary strain (PVY0) and PVYn using indirect ELISA. Clones of interest were further cross-reacted with 12 isolates each of PVY0 and PVYn and two isolates of potato virus A (PVA) and healthy sap. For further trials, two clones which reacted specifically with PVYn isolates and one which detected all PVY isolates except two of potato virus C (PVC) were selected.  相似文献   

18.
In this study we applied RNA silencing to engineer potato plants that are resistant to potato virus Y (PVY). We expressed double-stranded (ds) RNA derived from the 3 terminal part of the coat protein gene of PVY, which is highly conserved in sequence amongst different PVY isolates, in transgenic potatoes of the commercial variety Spunta. Transgenic plants were analyzed for generation of transgene-derived short interfering RNAs (siRNAs) prior to virus inoculation. Twelve of fifteen transgenic lines produced siRNAs and were highly resistant to three strains of PVY, each belonging to three different subtypes of the virus (PVYN, PVYO and PVYNTN). Infection of transgenic plants with Potato virus X (PVX) simultaneously or prior to the challenge with PVY did not interfere with PVY-resistance.Anastasia Missiou: M.A. and K.K. have contributed equally to this workKriton Kalantidis: M.A. and K.K. have contributed equally to this work  相似文献   

19.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

20.
Coat protein-mediated resistance (CPMR), resistance conferred as a result of the expression of viral coat proteins in transgenic plants, has been illustrated to be an effective way of protecting plants against several plant viruses. Nonetheless, consistent protection has not been achieved for transgenic plants expressing the coat protein of potato virus Y (PVY), the type member of the potyvirus family. In this report, three different potato cultivars were transformed with a chimeric construct consisting of the capsid protein (CP) coding sequences of PVY flanked by the AUG codon and the translational enhancer from the coat protein gene of potato virus X (PVX). These cultivars were shown to express high levels of PVY CP and confer a high degree of protection against PVYo and PVYN under both greenhouse and field conditions. In addition, transgenic plants infected with potato virus A (PVA), a related potyvirus, exhibited a delay in virus accumulation, which could be easily overcome with increasing virus concentrations. Received: 26 October 1995 / Accepted: 14 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号