首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   113篇
  国内免费   1篇
  2023年   13篇
  2022年   16篇
  2021年   64篇
  2020年   36篇
  2019年   54篇
  2018年   60篇
  2017年   49篇
  2016年   79篇
  2015年   128篇
  2014年   130篇
  2013年   144篇
  2012年   185篇
  2011年   140篇
  2010年   91篇
  2009年   66篇
  2008年   80篇
  2007年   77篇
  2006年   79篇
  2005年   70篇
  2004年   62篇
  2003年   51篇
  2002年   39篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1802条查询结果,搜索用时 109 毫秒
1.
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.  相似文献   
2.
3.
In our previous studies, we observed the biological control effect of lactic acid bacteria strains (LABs) KLF01, KLC02 and KPD03 against different plant pathogenic bacteria in vitro against Ralstonia solanacearum, and strains KLF01 and KLC02 against Pectobacterium carotovorum under greenhouse and field experiments, respectively. In this study, we observed the efficacy of these bacteria against bacterial spot pathogen (Xanthomonas campestris pv. vesicatoria) and their plant growth-promoting activities in pepper (Capsicum annuum L. var. annuum), under greenhouse and field conditions. LABs significantly (P < 0.05) reduced bacterial spot on pepper plants in comparison to untreated plants in both the greenhouse and the field experiments. The plant growth-promoting effect of LABs on pepper varied; some strains had a significant effect on growth promotion (P < 0.05) compared with untreated plants, while some showed no significant effect in the greenhouse and field experiments. Additionally, LABs were able to colonise roots, produce indole-3-acetic acid (IAA), siderophores and solubilise phosphate. These findings indicate that application of LABs could provide a promising alternative for the management of bacterial spot disease in pepper plants and could therefore be used as a healthy plant growth-promoting agent.  相似文献   
4.
Intestinal iron absorption during suckling in mammals   总被引:1,自引:0,他引:1  
The maintenance of appropriate iron levels is important for mammalian health, particularly during the rapid growth period following birth. Too little iron can lead to irreversible damage to the developing central nervous system and too much iron at this point can have adverse long term consequences, possibly due to excessive free radical production. In order to maintain iron levels, intestinal iron absorption is very efficient in young mammals, such that almost all of the iron in breast milk is utilized. However this high level of absorption is unable to be down regulated in response to excess iron as it can be in adults, implying that different regulatory processes are involved during suckling. Various mechanisms have been proposed to explain this high absorption, including enhanced expression of the proteins involved in iron absorption in adults (particularly DMT1 and ferroportin), non-specific uptake via pinocytosis, and the uptake of lactoferrin bound iron by the lactoferrin receptor. However, at present the precise mechanism is unclear. It is possible that all of these components contribute to the high intestinal iron absorption seen during suckling, or a novel, as yet undescribed, mechanism could be involved. This review summarises the evidence for and against each of the mechanisms described above and highlights how little is known about iron homeostasis in this vital stage of development.  相似文献   
5.
6.
Despite our extensive knowledge of insulin-like growth factor 1 (IGF1) action on the growing skeleton, its role in skeletal homeostasis during aging and age-related development of certain diseases is still unclear. Advanced glycation end products (AGEs) derived from glucose are implicated in osteoporosis and a number of diabetic complications. We hypothesized that because in humans and rodents IGF1 stimulates uptake of glucose (a glycation substrate) from the bloodstream in a dose-dependent manner, the decline of IGF1 could be associated with the accumulation of glycation products and the decreasing resistance of bone to fracture. To test the aforementioned hypotheses, we used human tibial posterior cortex bone samples to perform biochemical (measurement of IGF1, fluorescent AGEs and pentosidine (PEN) contents) and mechanical tests (crack initiation and propagation using compact tension specimens). Our results for the first time show a significant, age-independent association between the levels of IGF1 and AGEs. Furthermore, AGEs (fAGEs, PEN) predict propensity of bone to fracture (initiation and propagation) independently of age in human cortical bone. Based on these results we propose a model of IGF1-based regulation of bone fracture. Because IGF1 level increases postnatally up to the juvenile developmental phase and decreases thereafter with aging, we propose that IGF1 may play a protective role in young skeleton and its age-related decline leads to bone fragility and an increased fracture risk. Our results may also have important implications for current understanding of osteoporosis- and diabetes-related bone fragility as well as in the development of new diagnostic tools to screen for fragile bones.  相似文献   
7.
8.
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.  相似文献   
9.
Human matrix metalloproteinase-8 (hMMP-8) plays a important role in the progression of colorectal cancer, metastasis, multiple sclerosis and rheumetoid arthritis. Extensive MD-simulation of the PDB and solvated structures of hMMP-8 has revealed the presence of few conserved water molecules around the catalytic and structural zinc (ZnC and ZnS) ions. The coordination of two conserved water molecules (W and WS) to ZnS and the H-bonding interaction of WS to S151 have indicated the plausible involvement of that metal ion in the catalytic process. Beside this the coupling of ZnC and ZnS metal ions (ZnC – WH (W1)…..W2 ….H162 - ZnS) through two conserved hydrophilic centers (occupied by water molecules) may also provide some rational on the recognition of two zinc ions which were separated by ~13 Å in their X-ray structures. This unique recognition of both the Zn+2 ions in the enzyme through conserved water molecules may be implemented/ exploited for the design of antiproteolytic agent using water mimic drug design protocol.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号