首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究对映-贝壳杉烷型二萜化合物Leukamenin E对拟南芥种子萌发、下胚轴伸长以及根生长发育的作用模式,并探讨植物激素生长素和乙烯可能介导Leukamenin E影响拟南芥主根生长、侧根和根毛发育的初步机制。结果表明:Leukamenin E浓度在10~160μmol·L~(-1)范围对拟南芥种子的萌发率无显著影响,但高浓度Leukamenin E(80~160μmol·L-1)显著抑制种子的萌发速率。Leukamenin E对拟南芥幼苗根生长的抑制作用明显高于对下胚轴的抑制效应。进一步研究表明,Leukamenin E通过阻滞根尖细胞有丝分裂和细胞伸长进而抑制主根的生长,并能促进侧根提前发生并影响其形成数量,同时减少根毛密度及降低根毛长度。Leukamenin E联合乙烯利(乙烯释放剂)处理可阻止乙烯利单独使用对拟南芥幼苗根毛生长的促进作用,与Ag+(乙烯竞争抑制剂)联合乙烯利的作用效果相一致,表明Leukamenin E可能通过干扰根细胞乙烯途径而抑制根毛发育。流动注射化学发光分析和酶联免疫检测的结果发现,Leukamenin E显著上调拟南芥幼苗根组织中生长素(IAA)水平,表明生长素可能作为主要因子介导了Leukamenin E对拟南芥幼苗根生长发育的调节作用。  相似文献   

2.
植物根毛生长发育及分子调控机理   总被引:2,自引:0,他引:2  
植物根毛是植物吸收营养的主要器官, 了解根毛的发生、发育及遗传规律, 能对植物的养分吸收研究提供有利依据。文章旨在介绍植物根毛形态发生特性、发育生长过程及分子调控机理的研究进展, 利用比较基因组学方法研究农作物根毛形态和功能, 及有目的性的对根生长发育进行调控提供参考。研究发现植物根毛发育有反馈侧向抑制(lateral inhibition with feedback)和位置决定模式(position-dependent pattern of cell differentiation)两种方式。拟南芥根表皮细胞是以位置方式决定毛或非毛细胞发育类型, 已成为研究植物细胞命运和分化的模型。目前, 已经鉴定出控制根毛发育的基因, 包括一些转录因子如MYB家族蛋白TRIPTYCHON(TRY)、CAPRICE(CPC)和basic Helix-Loop-Helix (bHLH)蛋白GLABRA3、ENHANCER OF GLABRA3(EGL3)及WD-repeat蛋白等基因。最后针对根毛研究前景提出展望。  相似文献   

3.
角果发育对某些物种的生殖发育具有重要的作用。拟南芥种子附着在角果里,角果在早期发育时进行光合作用,角果成熟后开裂散落种子之前,其细胞会经历一个衰老的过程。一般植物细胞在衰老过程中要经历膜脂降解的过程,但是角果细胞衰老过程仍未知。通过比较角果衰老过程中拟南芥野生型(WS)及与膜脂代谢密切相关的磷脂酶Dδ缺失突变体(PLDδ KO)中膜脂分子的组成情况、膜脂含量、相对含量及双键指数值,结果发现,在拟南芥角果衰老过程中:(i)质体膜脂和质体外膜脂显著下降;(ii)不同膜脂降解速率不一样,质体膜脂的降解比质体外膜脂的降解快;(iii)总的双键指数DBI下降;(iv)磷脂酶Dδ缺失突变体(PLDδ KO)的角果膜脂组成的基本水平和变化样式与野生型(WS)非常相似。结果说明,角果在衰老过程中发生了膜脂的激烈降解。据此推测:(i) 膜脂水解产物可能转移到种子中用于储藏脂三酰甘油的合成;(ii) 质体膜脂相对含量下降和质体外膜脂相对含量上升导致了总的DBI下降;(iii) PLDδ参与了角果衰老中的膜脂代谢。  相似文献   

4.
FAB1/PIKfyve是介导PI(3,5)P2 (磷脂酰肌醇3,5-二磷酸)生物合成的磷酸肌醇激酶。在动物和酵母(Saccharomyces cerevisiae)中, PI(3,5)P2参与调控胞内膜运输,但在植物中的研究较少。该文通过分析拟南芥(Arabidopsis thaliana) FAB1的T-DNA插入突变体的表型解析PI(3,5)P2的生物学功能。拟南芥FAB1基因家族包含FAB1A、FAB1B、FAB1C和FAB1D四个基因。研究发现,fab1a/b呈现雄配子体致死的表型。利用遗传杂交获得fab1b/c/d三突变体,发现FAB1B、FAB1C和FAB1D功能缺失导致根毛相比野生型变短,经FAB1特异性抑制剂YM201636处理后的野生型中也观察到相似的短根毛表型。此外, fab1b/c/d三突变体中DR5转录水平降低。同时,外源施加生长素类似物2,4-D和NAA能部分恢复fab1b/c/d植株短根毛的表型,但fab1b/c/d突变体对生长素转运抑制剂(1-NOA和TIBA)的敏感性与野生型相似。此外,FAB1B/C/D功能缺失使根毛中ROS的含量减少且影响肌动蛋白的表达。上述结果表明, FAB1B/C/D通过调控生长素分布、ROS含量和肌动蛋白的表达影响拟南芥根毛伸长。  相似文献   

5.
该实验对CDF1类似蛋白基因(P1)在拟南芥叶片发育不同阶段的定量PCR结果显示,P1基因在拟南芥叶片发育的所有时期均可表达,但在茎生叶和衰老叶中的表达水平明显高于成熟叶和幼叶。GUS报告基因表达的组织化学染色结果显示,P1启动子在拟南芥叶片中有较高的驱动活性;在营养生长阶段的幼苗和植株(4~5周)的所有叶片中均能检测到GUS表达,但在植株转入生殖生长阶段后(6周及以后),GUS表达主要集中在逐渐衰老的叶中,并随着叶片衰老程度加剧GUS染色程度也越深,这一结果与GUS荧光定量检测结果一致。通过分析P1基因启动子上可能存在的顺式调控元件,发现茉莉酸甲酯、热压、干旱和水杨酸等均能够引起叶片衰老调控元件的响应,证实P1的表达受到这些因素的调控。研究表明,P1在拟南芥莲座叶片中很可能参与了对上游衰老信号的响应,该研究结果为进一步探究P1在叶片衰老过程中的分子功能验证奠定了基础。  相似文献   

6.
以野生型拟南芥(WT)及其生长素和乙烯不敏感型突变体(aux1-7、axr1-3、etr1-1和etr1-3)为实验材料,采用固体培养法研究了高浓度硝酸铵对根毛发育的影响,以揭示其调控根毛发育的机制。结果表明:(1)随着外源硝酸铵浓度的逐渐增加,拟南芥根毛伸长受阻,产生大量的分叉根毛。(2)高浓度硝酸铵条件下,外源活性氧或活性氧产生抑制剂二苯基氯化碘(DPI)的添加能抑制高浓度硝酸铵诱导的分叉根毛产生。(3)高浓度硝酸铵条件下,外源生长素或乙烯合成前体物质1-氨基-环丙烷-1-羧酸(ACC)处理能恢复根毛的正常生长,解除高浓度硝酸铵诱导根毛分叉现象。(4)高浓度硝酸铵条件下,外源生长素处理乙烯不敏感型突变体或ACC处理生长素不敏感型突变体均能抑制突变体分叉根毛的形成。研究表明,活性氧、生长素和乙烯都参与了高浓度硝酸铵对根毛发育的过程调控;在硝酸铵诱导的根毛分叉中生长素和乙烯存在相互作用,在缺乏生长素信号通路时,乙烯能够发挥补充作用抑制分叉根毛的产生;在缺乏乙烯信号通路时,生长素也可以弥补缺失乙烯的作用抑制根毛的分叉,但是需要更高浓度的生长素才能充分抑制分叉根毛的产生。  相似文献   

7.
乙烯在植物形态发育中的作用(综述)   总被引:2,自引:0,他引:2  
乙烯对植物生长发育的许多方面,如根的形成,花的诱导,器官衰老脱落均起重要的调节作用。拟南芥根表皮中的乙烯是根毛发育的一个正调控因子。兰花授粉诱导花被萎蔫过程的早期反应是提高了对内源乙烯水平的敏感性。  相似文献   

8.
磷脂酰肌醇3 激酶(PI3K)/蛋白激酶B(PKB,又称为Akt)/叉头转录因子(FOXO)信号通路在从酵母菌到小鼠的寿命以及衰老的调节上都起着非常重要的作用.有研究发现,血清可以激活年轻细胞、衰老细胞胞浆内的Akt,并且年轻细胞核内磷酸化Akt(pAkt)增多,而衰老细胞核内pAkt没有增多.为了研究衰老细胞膜是否发生转位受损,即pAkt能否通过衰老细胞核膜进入核内,通过激光共聚焦显微镜(CLSM)、Western 印迹等实验方法,发现衰老细胞胞浆中pAkt可以进入核内,进入核内的pAkt很快被去磷酸化灭活.  相似文献   

9.
乙烯对植物生长发育的许多方面,如根的形成、花的诱导、器官衰老脱落均起重要的调节作用。拟南芥根表皮中的乙烯是根毛发育的一个正调控因子。兰花授粉诱导花被萎蔫过程的早期反应是提高了对内源乙烯水平的敏感性。  相似文献   

10.
活性氧(ROS)和植物激素是植物衰老过程中重要的内在或者外在的调控因子.我们发现,相对于离体诱导的衰老过程,在脱落酸(ABA)和乙烯(ethylene)促进的衰老过程中有较多的活性氧积累;在对拟南芥磷脂酶Dδ (PLDδ)缺失型突变体的研究中发现,与野生型相比,突变体在衰老过程中产生较少的活性氧.我们比较了上述两种基因型的离体叶片在离体、ABA和ethylene三种衰老处理下内源的ABA、茉莉酸甲酯(MeJA)、玉米素核苷(Zeatin Riboside,ZR)和吲哚乙酸(IAA)的含量变化,发现每一种激素对上述三种衰老处理的响应模式都很相似.在离体诱导的衰老中,两种基因型拟南芥的内源激素含量没有差异;而在ABA促进的衰老过程中,PLDδ缺失型突变体叶片中的MeJA的含量较低,ZR和IAA含量较高;在乙烯促进的衰老过程中,突变体中的ABA和MeJA的含量较低,ZR和IAA含量较高.上述内源激素的这种变化可能有助于延缓突变体的衰老.  相似文献   

11.
Primary roots of two species of Sonoran Desert Cactaceae, Stenocereus gummosus and Pachycereus pringlei, have a determinate pattern of growth: meristematic cells divide only for a limited time and then differentiate. Detecting DNA fragmentation by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL), we have shown that programmed cell death (PCD) was not involved in meristem exhaustion. However, we found TUNEL-positive nuclei in the root hair and root cap cells of both species. Programmed cell death in root hair cells has not been previously reported, and the pattern of PCD events in the root cap differed from that described earlier. These data suggest that in the studied Cactaceae, PCD is involved in developmental adaptations related to the formation of a compact root system important for rapid seedling establishment in a desert environment. Participation of PCD in developmental loss of the root cap and in root hair renovation proposed in the current study implicates an evolutionary conserved link between PCD and differentiation processes in plants.  相似文献   

12.
Chalcone (1,3-diphenyl-2-propen-1-one) is an aromatic ketone precursor of important molecules in plants such as flavonoids or anthocyanins. Its phytotoxicity has been demonstrated on different plant species, but to date little is known about the mechanisms of action of this secondary metabolite at plant cellular level. Detailed analysis by light and transmission electron microscopy (TEM) was conducted to examine the root meristems' ultrastructure of control and chalcone-treated Arabidopsis seedlings. Mitochondrial dysfunction was analysed by measuring mitochondrial membrane potential with JC-1 fluorochrome. Finally, acridine orange/ethidium bromide staining was used for the detection of programmed cell death. Microscopy revealed tissue alterations, inhibition of root hair formation and important changes after 7 and 14 d at the chalcone IC(50) value. Chalcone-treated cells showed signs of programmed cell death such as mitochondrial condensation, disruption of organelles and chromatin fragmentation. Acridine orange/ethidium bromide staining confirmed the programmed cell death, which could be induced by the reduction of mitochondrial transmembrane potential (ΔΨ(m)) that was detected after chalcone treatment. These results confirm the phytotoxic activity of chalcone on Arabidopsis seedlings, the alteration of mitochondrial membrane potential and the induction of programmed cell death.  相似文献   

13.
Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild‐type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase‐null mutants exhibited nitrate‐dependent root hair phenotypes comparable with wild‐type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate‐induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana.  相似文献   

14.
Bai S  Li M  Yao T  Wang H  Zhang Y  Xiao L  Wang J  Zhang Z  Hu Y  Liu W  He Y 《Nitric oxide》2012,26(1):54-60
Nitric oxide (NO) participates in the regulation of diverse functions in plant cells. However, different NO concentrations may trigger different pathways during the plant development. At basal levels of NO, plants utilize the NO signaling transduction pathway to facilitate plant growth and development, whereas higher concentrations trigger programmed cell death (PCD). Our results show that NO lower than the levels causing PCD, but higher than the basal levels induce DNA damage in root cells in Arabidopsis as witnessed by a reduction in root growth, rather than cell death, since cells retain the capacity to differentiate root hairs. The decrease in meristematic cells and increase in DNA damage signals in roots in responses to NO are in a dose dependent manner. The restraint of root growth is due to cell cycle arrest at G1 phase which is caused by NO induced DNA damage, besides a second arrest at G2/M existed in NO supersensitive mutant cue1. The results indicate that NO restrain root growth via DNA damage induced cell cycle arrest.  相似文献   

15.
Cell polarity is a fundamental aspect of eukaryotic cells. A central question for cell biologists is how the polarity of a cell is established and maintained. Root hairs are exceptionally polarized structures formed from specific root epidermal cells. The morphogenesis of root hairs is characterized by the localized cell growth in a small dome at the tip of the hair, a process called tip growth. Root hairs are thus an attractive model system to study the establishment and maintenance of cell polarity in eukaryotes. Research on Arabidopsis root hairs has identified a plethora of molecular and cellular components that are important for root hair tip growth. Recently, studies on RHD3 and Atlastin have revealed a surprising similarity with respect to the role of the tubular ER network in tip growth of root hairs in plants and the axonal outgrowth of corticospinal neurons in neurological disorders known as hereditary spastic paraplegia (HSP). In this mini-review, we highlight recent progress in understanding of the function and regulation of RHD3 in the generation of the tubular ER network and discussed ways in which RHD3 could be involved in the establishment and maintenance of root hair tip growth.  相似文献   

16.
17.
Li J  Wang DY  Li Q  Xu YJ  Cui KM  Zhu YX 《Cell calcium》2004,35(1):71-77
PPF1 encodes a putative calcium ion carrier that affects the flowering time of transgenic Arabidopsis by modulating Ca(2+) storage capacities in chloroplasts of a plant cell. In the current work, we found that differential expression of PPF1 might affect processes of programmed cell death (PCD) since DNA fragmentation was detected in senescencing apical buds of long day-grown G2 pea (Pisum sativum L.) plants, but was not in non-senescencing short day-grown counterparts at all growth stages. An animal inhibitor of caspase-activated DNase (ICAD) homologue was detected in short day-grown plant continuously throughout the whole experiment and only in early stages of long day-grown pre-floral G2 pea apical buds. DNA fragmentation was significantly inhibited in apical meristems of transgenic Arabidopsis that over-expressed the PPF1 gene when compared to that of either wild-type control or to PPF1 (-) plants. The expression of ICAD-like protein decreased to undetectable level at 45 dpg in apical tissues of PPF1 (-) Arabidopsis, which was much earlier than that found in PPF1 (+) or wild-type controls. In epidermal cells of PPF1 (-) plants, we recorded significantly earlier calcium transient prior to PCD. We suggest that the expression of PPF1, a chloroplast localized Ca(2+) ion channel may inhibit programmed cell death in apical meristems of flowering plants by keeping a low cytoplasmic calcium content that might inhibit DNA fragmentation in plant cells.  相似文献   

18.
Kim CM  Park SH  Je BI  Park SH  Park SJ  Piao HL  Eun MY  Dolan L  Han CD 《Plant physiology》2007,143(3):1220-1230
Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.  相似文献   

19.
Environmentally induced plasticity of root hair development in Arabidopsis   总被引:12,自引:0,他引:12  
Postembryonic development of plants is dependent on both intrinsic genetic programs and environmental factors. The plasticity of root hair patterning in response to environmental signals was investigated in the Columbia-0 wild type and 19 Arabidopsis mutants carrying lesions in various parts of the root hair developmental pathway by withholding phosphate or iron (Fe) from the nutrient medium. In the aging primary root and in laterals of the wild type, the number of root hairs increased in response to phosphate and Fe deficiency in a manner typical of each growth type. Although an increase in root hair density in -phosphorus plants was mainly achieved by the formation of extra hairs over both tangential and radial wall of underlying cortical cells, roots of -Fe plants were characterized by a high percentage of extra hairs with two tips. Root hair patterning and hair length was differentially affected by the presence or absence of phosphate and Fe among the genotypes under investigation, pointing to separate cascades of gene activation under all three growth conditions. Divergence in root hair patterning was most pronounced among mutants with defects in genes that affect the first stages of differentiation, suggesting that nutritional signals are perceived at an early stage of epidermal cell development. During elongation of the root hairs, no differences in the requirement of gene products between the growth types were obvious. The role of genes involved in root hair development in the aging primary root of Arabidopsis under the various growth conditions is discussed.  相似文献   

20.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号