首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
MicroRNA与肿瘤相关的信号转导通路   总被引:1,自引:0,他引:1  
吴易阳  李岭 《遗传》2007,29(12):1419-1428
信号转导通路在细胞代谢、生长、增殖、应激、发育和凋亡等生命活动中具有极为重要的作用。干扰这些通路将可能影响细胞的正常发育, 甚至导致肿瘤。MicroRNA(miRNA)是近年来在真核生物中发现的、在转录后水平负调节基因表达的一类长度约22个核苷酸的非编码小RNA, 其靶基因数目众多, 生物学功能广泛。在多种肿瘤中发现了miRNA的异常表达, 提示后者与肿瘤发生有关, 可能机制为调控癌基因或肿瘤抑制基因的表达。此外亦发现miRNA的靶基因有许多作用于肿瘤相关的信号转导通路。miRNA在肿瘤发生过程中的重要调控功能预示其将成为人类癌症诊断和治疗方面的新星。  相似文献   

2.
植物miRNA在调控基因表达、细胞周期、生物体发育、抗逆等方面起重要作用。为研究胡杨(Populus euphratica Oliv.)的耐盐机制,以1年生胡杨无性系幼苗为材料,构建具有空间代表性的盐胁迫胡杨cDNA文库,利用二代测序技术测定NaCl胁迫下和正常培养条件下胡杨叶和根miRNA表达情况。结果表明,不同的miRNA之间表达量存在明显差异,表达丰度最高的miRNA有miR156、miR157、miR165、miR166和miR167等,合计占总表达量的90%以上。胡杨根部存在特异表达的miRNA,在整个耐盐调控机制中发挥着生理调节、分子调控和信号传导等极为重要的作用。盐处理样品中发现大量响应盐胁迫的miRNA,对这些转录因子进行靶基因预测和注释后,发现很多盐胁迫响应的miRNA与NAC和SPL等重要转录因子家族相关,与前人的结论一致,另外还发现许多miRNA的调控对象是ATP酶和激素响应因子。  相似文献   

3.
Growth factors, oncogenes, and multistage carcinogenesis   总被引:8,自引:0,他引:8  
This paper presents evidence that the full repertoire of cellular genes involved in the carcinogenic process is several times larger than that of the known list of proto-oncogenes. Furthermore, this repertoire includes genes whose normal function is related to growth stimulation, as well as genes whose normal function is to inhibit growth or induce terminal differentiation. Multistage carcinogenesis probably results from a complex series of changes in both categories of genes. Despite this complexity, carcinogenesis can be conceived in terms of disturbances in biochemical functions that normally control the expression or function of growth factors, receptors, and pathways of signal transduction. Several protein kinases play a central role in the process of signal transduction. Our laboratory has recently isolated cDNA clones for the enzyme protein kinase C (PKC). These clones should be useful for clarifying the role of PKC in growth control and tumor promotion. Finally, the existence of genes whose normal function is to inhibit cell growth provides a rationale for new strategies of cancer prevention and treatment.  相似文献   

4.
5.
RASSF1A(Ras association domain family 1 isoform A)是定位于染色体3p21.3区域的抑瘤基因,编码一个由340个氨基酸残基构成的微管相关蛋白.该基因在包括恶性黑色素瘤在内的多种肿瘤中因启动子高甲基化而表达沉默.本研究建立了RASSF1A稳定表达的恶性黑色素瘤A375细胞系,通过全基因组表达谱基因芯片分析RASSF1A过表达对A375细胞基因表达谱的影响,发现RASSF1A引起184个基因表达上调,26个基因表达下调.通过Realtime RT-PCR对部分差异表达基因进行验证,结果表明与芯片筛选结果一致.RASSF1A影响的差异表达基因功能上归属于细胞生长与增殖、细胞周期、细胞凋亡、细胞间黏附、信号传导等生物过程.采用STRING软件构建了RASSF1A影响的差异表达基因调控网络,结果表明RASSF1A调控的差异表达基因构成一个高连接度的基因网络.其中,炎症细胞因子、转录因子位于网络中央.RASSF1A通过影响炎症细胞因子与转录因子之间的表达,影响A375细胞基因网络,调节黑色素瘤恶性生物学行为.  相似文献   

6.
目的:分析miR-335在多种肿瘤组织与癌旁组织中的表达,预测其靶基因并进行相关生物信息学分析,为进一步研究miR-335在肿瘤中的调控机制提供理论基础。方法:分析miR-335的保守性及在多个肿瘤组织中的表达;预测miR-335靶基因,并使用DAIVID对miR-335靶基因进行生物信息学分析。结果:miR-335序列高度保守,在肝癌、肺癌、乳腺癌、肝内胆管癌、脂肪肉瘤中表达下调(P<0.05)。预测miR-335靶基因共34个,靶基因集合功能富集于细胞迁移、凋亡、转录调控,以及蛋白质分子连接、细胞骨架组成等生物学过程和分子功能(P<0.05);主要参与了轴突向导和黏着斑信号通路、黑素瘤疾病信号通路及TGF-β信号通路(P<0.05)。结论:miR-335在多种肿瘤中表达异常,且涉及多个生物学过程和信号转导通路,与肿瘤的发生发展密切相关。  相似文献   

7.
Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer, but it often fails because of the relative non-susceptibility of lung cancer cells to radiation. MicroRNAs (miRNAs) have been reported to modulate the radiosensitivity of lung cancer cells and have the potential to improve the efficacy of radiotherapy. The purpose of this study was to identify a miRNA that can adjust radiosensitivity in lung adenocarcinoma cells. Two lung adenocarcinoma cell lines (CL1-0 and CL1-5) with different metastatic ability and radiosensitivity were used. In order to understand the regulatory mechanisms of differential radiosensitivity in these isogenic tumor cells, both CL1-0 and CL1-5 were treated with 10 Gy radiation, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The changes in expression of miRNA upon irradiation were examined using Illumina Human microRNA BeadChips. Twenty-six miRNAs were identified as having differential expression post-irradiation in CL1-0 or CL1-5 cells. Among these miRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Overexpression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation.  相似文献   

8.
9.

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1125) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
MicroRNAs (miRNAs) are a class of endogenous non-protein-coding small RNAs that are evolutionarily conserved and widely distributed among species. Their major function is to negatively regulate target gene expression. A single miRNA can regulate multiple target genes, indicating that miRNAs may regulate multiple signaling pathways and participate in a variety of physiological and pathological processes. Currently, approximately 50% of identified human miRNA-coding genes are located at tumor-related fragile chromosome regions. Abnormal miRNA expression and/or mutations have been found in almost all types of malignancies. These abnormally expressed miRNAs play roles similar to tumor suppressor genes or oncogenes by regulating the expression and/or function of tumor-related genes. Therefore, miRNAs, miRNA target genes, and the genes regulating miRNAs form a regulatory network with miRNAs in the hub. This network plays a pivotal role in tumorigenesis and tumor development.  相似文献   

13.
14.
微小RNA(microRNA, miRNA)是一类长度在22 nt左右的内源非编码小RNA,广泛存在于动物、植物、病毒等多种有机体中,是机体正常衰老与疾病的重要调控因子。本文对果蝇不同生长时期miRNA的表达模式、主要衰老相关信号通路以及与衰老相关的miRNA进行了综述。在果蝇的不同发育时期均有特定的miRNA发挥重要作用,其表达模式与功能相关;miRNA参与了主要衰老分子信号通路的调控,如胰岛素/胰岛素样生长因子(IIS)通路和雷帕霉素靶蛋白(TOR)通路。研究表明,miRNA通过调控衰老相关信号通路中的靶基因,进而促进或延缓果蝇衰老,如miR-34, miR-8, miR-14, miR let7和miR-277等。因此,研究参与衰老调控的miRNA,为阐明衰老机制及抗衰老药物的设计奠定了基础。  相似文献   

15.
The role of the ResD-ResE two-component signal transduction system in regulation of the bacilli guanyl-specific ribonucleases genes expression was studied. The proteins with the homology to the Bacillus subtilis ResD and ResE regulatory proteins were found in all sequenced genomes of the Bacillus. Using the B. subtilis strains deficient in the genes for these proteins it was shown that the ResD-ResE signal transduction system positively regulates the expression of the genes for B. intermedius, B. pumilus, and B. thuringiensis ribonucleases in the B. subtilis host cell. The data obtained in this work indicate that regulatory system similar to the B. subtilis ResD-ResE two-component signal transduction system also functions in other representatives of the Bacillus genus.  相似文献   

16.
17.
Ionizing radiations elicit a variety of biological effects in mammalian cells. In recent years altered signal transduction has been recognized as a key cellular response to ionizing radiation. Several oncogenes, the products of which are components of signal transduction pathways and which are over-expressed in many tumors, are specifically induced in cells exposed to radiation. It has also become evident that the oncogene ras and the serine/threonine protein kinase oncogenes raf and PKC confer radio-resistance to tumor cells. Modulation of these genes or their activity by natural compounds may offer a strategy to treat cancer by enhancing radiation-induced apoptosis of tumor cells.  相似文献   

18.
Bacteria have developed sophisticated signal transduction pathways to sense and respond to environmental stresses. These pathways include intracellular regulators that elicit adaptive changes in the physiology of the cell. Extensive work, mostly performed in Escherichia coli, showed that the modified nucleotide ppGpp plays a key regulatory role by co-ordinating the cellular responses to adverse environmental conditions. In this issue of Molecular Microbiology, Traxler et al. define two sets of ppGpp-dependent genes that are expressed at different times after induction of ppGpp synthesis. Their results suggest that quantitative differences in the ppGpp intracellular concentration determine the precise pattern of gene expression during adaptation process: low levels of ppGpp suffice to activate the Lrp regulon, which, by activating the synthesis of some amino acid pathways, can generate a negative feedback loop while high levels activate RpoS and a feed-forward amplification of the general stress response. These dose-dependent effects on gene expression open new perspectives on the complex regulatory pathways mediated by ppGpp during environmental adaptation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号