首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Macrophages infected with HIV-1 produce high levels of M-CSF and macrophage-inflammatory protein-1alpha (MIP-1alpha). M-CSF facilitates the growth and differentiation of macrophages, while the chemotactic properties of MIP-1alpha attract both T lymphocytes and macrophages to the site of HIV infection. Studies described in this work indicate M-CSF may function in an autocrine/paracrine manner to sustain HIV replication, and data suggest possible therapeutic strategies for decreasing viral load following HIV infection. We show that macrophage infection with measles virus or respiratory syncytial virus, in contrast to HIV-1, results in production of MIP-1alpha, but not M-CSF. Thus, M-CSF appears to be specifically produced upon infection of macrophages with HIV-1. Furthermore, addition of M-CSF antagonists to HIV-1-infected macrophages, including anti-M-CSF monoclonal or polyclonal Abs or soluble M-CSF receptors, dramatically inhibited HIV-1 replication and reduced production of MIP-1alpha. Our results suggest that biologic antagonists for M-CSF may represent novel strategies for inhibiting the spread of HIV-1 by 1) blocking virus replication in macrophages, 2) reducing recruitment of HIV-susceptible T cells and macrophages by MIP-1alpha, and 3) preventing the establishment and maintenance of infected macrophages as a reservoir for HIV.  相似文献   

2.
HIV-1 uses mononuclear phagocytes (monocytes, tissue macrophages, and dendritic cells) as a vehicle for its own dissemination and as a reservoir for continuous viral replication. The mechanism by which the host immune system clears HIV-1-infected macrophages is not understood. TRAIL may play a role in this process. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The plasma level of TRAIL is increased in HIV-1-infected patients, particularly those with high viral loads. To study the effect of elevated TRAIL on mononuclear phagocytes, we used recombinant human (rh) TRAIL and human monocyte-derived macrophages (MDM) as an in vitro model. Our results demonstrated rhTRAIL-induced apoptosis in HIV-1-infected MDM and inhibited viral replication, while having a reduced effect on uninfected MDM. HIV-1 infection significantly decreased Akt-1 phosphorylation; rhTRAIL exposure further decreased Akt-1 phosphorylation. Infection with a dominant-negative Akt-1 adenovirus potentiated rhTRAIL-induced apoptosis, while constitutively active Akt-1 blocked rhTRAIL-induced apoptosis in HIV-1-infected MDM. From this data we conclude the death ligand TRAIL preferentially provokes apoptosis of HIV-1-infected MDM, and the mechanism is reliant upon the inhibition of Akt-1 phosphorylation. Understanding this mechanism may facilitate the elimination of HIV-1-infected macrophages and lead to new therapeutic avenues for treatment of HIV-1 infection.  相似文献   

3.
4.
The induction of apoptosis in T cells by bystander cells has been repeatedly implicated as a mechanism contributing to the T cell depletion seen in HIV infection. It has been shown that apoptosis could be induced in T cells from asymptomatic HIV-infected individuals in a Fas-independent, TNF-related apoptosis-inducing ligand (TRAIL)-dependent manner if the cells were pretreated with anti-CD3. It has also been shown that T cells from HIV-infected patients were even more sensitive to TRAIL induction of apoptosis than they were to Fas induction. Recently, it has been reported that in an HIV-1 SCID-Hu model, the vast majority of the T cell apoptosis is not associated with p24 and is therefore produced by bystander effects. Furthermore, few apoptotic cells were associated with neighboring cells which were positive for either Fas ligand or TNF. However, most of the apoptotic cells were associated with TRAIL-positive cells. The nature of these TRAIL-positive cells was undetermined. Here, we report that HIV infection of primary human macrophages switches on abundant TRAIL production both at the RNA and protein levels. Furthermore, more macrophages produce TRAIL than are infected by HIV, indicating that a bystander mechanism may, at least in part, upregulate TRAIL. Exogenously supplied HIV-1 Tat protein upregulates TRAIL production by primary human macrophages to an extent indistinguishable from infection. The results suggest a model in which HIV-1-infected cells produce extracellular Tat protein, which in turn upregulates TRAIL in macrophages which then can induce apoptosis in bystander T cells.  相似文献   

5.
Zhu DM  Shi J  Liu S  Liu Y  Zheng D 《PloS one》2011,6(4):e18291

Background

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) could induce apoptosis of HIV-1-infected monocyte-derived macrophage (MDM), but the molecular mechanisms are not well understood.

Methodology/Principal Findings

By using an HIV-1 Env-pseudotyped virus (HIV-1 PV)-infected MDM cell model we demonstrate that HIV-1 PV infection down-regulates the expression of TRAIL decoy receptor 1 (DcR1) and 2 (DcR2), and cellular FLICE-inhibitory protein (c-FLIP), but dose not affect the expression of death receptor 4 and 5 (DR4, DR5), and Bcl-2 family members in MDM cells. Furthermore, recombinant soluble TRAIL and an agonistic anti-DR5 antibody, AD5-10, treatment stimulates reactive oxygen species (ROS) generation and JNK phosphorylation.

Conclusions/Significance

HIV infection facilitates TRIAL-induced cell death in MDM by down-regulating the expression of TRAIL decoy receptors and intracellular c-FLIP. Meanwhile, the agonistic anti-DR5 antibody, AD5-10, induces apoptosis synergistically with TRAIL in HIV-1-infected cells. ROS generation and JNK phosphorylation are involved in this process. These findings potentiate clinical usage of the combination of TRAIL and AD5-10 in eradication of HIV-infected macrophage and AIDS.  相似文献   

6.
The death of CD4+ CCR5+ T cells is a hallmark of human immunodeficiency virus (HIV) infection. We studied the plasma levels of cell death mediators and products—tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas ligand, TNF receptor type 2 (TNFR-2), and plasma microparticles—during the earliest stages of infection following HIV type 1 (HIV-1) transmission in plasma samples from U.S. plasma donors. Significant plasma TRAIL level elevations occurred a mean of 7.2 days before the peak of plasma viral load (VL), while TNFR-2, Fas ligand, and microparticle level elevations occurred concurrently with maximum VL. Microparticles had been previously shown to mediate immunosuppressive effects on T cells and macrophages. We found that T-cell apoptotic microparticles also potently suppressed in vitro immunoglobulin G (IgG) and IgA antibody production by memory B cells. Thus, release of TRAIL during the onset of plasma viremia (i.e., the eclipse phase) in HIV-1 transmission may initiate or amplify early HIV-1-induced cell death. The window of opportunity for a HIV-1 vaccine is from the time of HIV-1 transmission until establishment of the latently infected CD4+ T cells. Release of products of cell death and subsequent immunosuppression following HIV-1 transmission could potentially narrow the window of opportunity during which a vaccine is able to extinguish HIV-1 infection and could place severe constraints on the amount of time available for the immune system to respond to the transmitted virus.  相似文献   

7.
8.
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.  相似文献   

9.
10.
Avian influenza virus H5N1 is a potentially fatal disease not only in birds, but also in humans. The virus is able to induce apoptosis in many cell types including macrophages and dendritic cells. In the present study, we demonstrated that TNF-related apoptosis-inducing ligand (TRAIL) is involved in apoptosis-associated mechanisms of apoptosis downstream of the TRAIL receptor in H5N1 virus-infected human monocyte-derived macrophages (MDMs). Activation of caspase-10 was also observed in avian virus H5N1-infected MDMs. In the presence of caspase-10 inhibitor, Z-AEVD-FMK, the activation of Bid and a release of apoptotic-inducing factor (AIF) from mitochondria were markedly reduced, resulting in a significant decrease of apoptotic cells which suggested the involvement of caspase-10 activation in mitochondria leakage. Furthermore, neutralizing Ab against TRAIL significantly reduced caspase-10 activities, which paralleled with a decrease in the number of apoptotic cells. Together, this study demonstrated that apoptosis in avian virus H5N1-infected MDMs was induced by TRAIL-activated caspase-10, resulting in the activation of Bid and the release of AIF from mitochondria.  相似文献   

11.
Mononuclear phagocytes (MP) and T lymphocytes play a pivotal role in the host immune response to human immunodeficiency virus type 1 (HIV-1) infection. Regulation of such immune responses can be mediated, in part, through the interaction of the T-lymphocyte-expressed molecule CD40 ligand (CD40L) with its receptor on MP, CD40. Upregulation of CD40L on CD4+ peripheral blood mononuclear cells during advanced HIV-1 disease has previously been reported. Based on this observation, we studied the influence of CD40L-CD40 interactions on MP effector function and viral regulation in vitro. We monitored productive viral infection, cytokine and beta-chemokine production, and beta-chemokine receptor expression in monocyte-derived macrophages (MDM) after treatment with soluble CD40L. Beginning 1 day after infection and continuing at 3-day intervals, treatment with CD40L inhibited productive HIV-1 infection in MDM in a dose-dependent manner. A concomitant and marked upregulation of beta-chemokines (macrophage inhibitory proteins 1alpha and 1beta and RANTES [regulated upon activation normal T-cell expressed and secreted]) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) was observed in HIV-1-infected and CD40L-treated MDM relative to either infected or activated MDM alone. The addition of antibodies to RANTES or TNF-alpha led to a partial reversal of the CD40L-mediated inhibition of HIV-1 infection. Surface expression of CD4 and the beta-chemokine receptor CCR5 was reduced on MDM in response to treatment with CD40L. In addition, treatment of CCR5- and CD4-transfected 293T cells with secretory products from CD40L-stimulated MDM prior to infection with a CCR5-tropic HIV-1 reporter virus led to inhibition of viral entry. In conclusion, we demonstrate that CD40L-mediated inhibition of viral entry coincides with a broad range of MDM immune effector responses and the down-modulation of CCR5 and CD4 expression.  相似文献   

12.
The mechanisms linking HIV-1 replication, macrophage biology, and multinucleated giant cell formation are incompletely understood. With the advent of functional proteomics, the characterization, regulation, and transformation of HIV-1-infected macrophage-secreted proteins can be ascertained. To these ends, we performed proteomic analyses of culture fluids derived from HIV-1 infected monocyte-derived macrophages. Robust reorganization, phosphorylation, and exosomal secretion of the cytoskeletal proteins profilin 1 and actin were observed in conjunction with productive viral replication and giant cell formation. Actin and profilin 1 recruitment to the macrophage plasma membrane paralleled virus-induced cytopathicity, podosome formation, and cellular fusion. Poly-l-proline, an inhibitor of profilin 1-mediated actin polymerization, inhibited cytoskeletal transformations and suppressed, in part, progeny virion production. These data support the idea that actin and profilin 1 rearrangement along with exosomal secretion affect viral replication and cytopathicity. Such events favor the virus over the host cell and provide insights into macrophage defense mechanisms used to contain viral growth and how they may be affected during progressive HIV-1 infection.  相似文献   

13.
Dysfunction in mononuclear phagocyte (MP, macrophages and microglia) immunity is thought to play a significant role in the pathogenesis of HIV-1 associated dementia (HAD). In particular, elevated extracellular concentrations of the excitatory neurotransmitter glutamate, produced by MP as a consequence of viral infection and immune activation, can induce neuronal injury. To determine the mechanism by which MP-mediated neuronal injury occurs, the concentration and rates of production of extracellular glutamate were measured in human monocyte-derived macrophage (MDM) supernatants by reverse phase high-performance liquid chromatography (RP-HPLC). Measurements were taken of supernatants from MDM infected with multiple HIV-1 strains including ADA and DJV (macrophage tropic, M-tropic), and 89.6 (dual tropic). High levels of glutamate were produced by MDM infected with M-tropic viruses. AZT, an inhibitor of HIV-1 replication, inhibited glutamate generation, demonstrating a linkage between HIV-1 infection and enhanced glutamate production. In our culture system, glutamate production was dependent upon the presence of glutamine and was inhibited by 6-diazo-5-oxo-L-norleucine, a glutaminase inhibitor. Supernatants collected from HIV-1-infected MP generated more glutamate following glutamine addition than supernatants isolated from uninfected MP. These findings implicate the involvement of a glutamate-generating enzyme, such as phosphate-activated mitochondrial glutaminase (PMG) in MP-mediated glutamate production.  相似文献   

14.
Viruses have developed various strategies to protect infected cells from apoptosis. HIV-1 infected macrophages are long-lived and considered reservoirs for HIV-1. One significant deciding factor between cell survival and cell death is glucose metabolism. We hypothesized that HIV-1 protects infected macrophages from apoptosis in part by modulating the host glycolytic pathway specifically by regulating hexokinase-1 (HK-1) an enzyme that converts glucose to glucose-6-phosphate. Therefore, we analyzed the regulation of HK-1 in HIV-1 infected PBMCs, and in a chronically HIV-1 infected monocyte-like cell line, U1. Our results demonstrate that HIV-1 induces a robust increase in HK-1 expression. Surprisingly, hexokinase enzymatic activity was significantly inhibited in HIV-1 infected PBMCs and in PMA differentiated U1 cells. Interestingly, we observed increased levels of mitochondria-bound HK-1 in PMA induced U1 cells and in the HIV-1 accessory protein, viral protein R (Vpr) transduced U937 cell derived macrophages. Dissociation of HK-1 from mitochondria in U1 cells using a pharmacological agent, clotrimazole (CTZ) induced mitochondrial membrane depolarization and caspase-3/7 mediated apoptosis. Dissociation of HK-1 from mitochondria in Vpr transduced U937 also activated caspase-3/7 activity. These observations indicate that HK-1 plays a non-metabolic role in HIV-1 infected macrophages by binding to mitochondria thereby maintaining mitochondrial integrity. These results suggest that targeting the interaction of HK-1 with the mitochondria to induce apoptosis in persistently infected macrophages may prove beneficial in purging the macrophage HIV reservoir.  相似文献   

15.
Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-β). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-β. Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-β, and enhanced Leishmania phosphatidylserine-mediated phagocytosis.  相似文献   

16.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

17.
18.
19.
20.
Infiltration of human immunodeficiency virus type 1 (HIV-1)-infected and uninfected monocytes/macrophages in organs and tissues is a general phenomenon observed in progression of acquired immunodeficiency syndrome (AIDS). HIV-1 protein Nef is considered as a progression factor in AIDS, and is released from HIV-1-infected cells. Here, we show that extracellular Nef increases migration of monocytes. This effect is (i) concentration-dependent, (ii) reaches the order of magnitude of that induced by formyl-methyonyl-leucyl-proline (fMLP) or CC chemokine ligand 2 (CCL2)/monocyte chemotactic protein (MCP)-1, (iii) inhibited by anti-Nef monoclonal antibodies as well as by heating, and (iv) depends on a concentration gradient of Nef. Further, Nef does not elicit monocytic THP-1 cells to express chemokines such as CCL2, macrophage inhibitory protein-1alpha (CCL3) and macrophage inhibitory protein-1beta (CCL4). These data suggest that extracellular Nef may contribute to disease progression as well as HIV-1 spreading through affecting migration of monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号