首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
In order to cultivate an improved variety with higher potential yield and establish an efficient in vitro regeneration system of strawberry ‘Akihim'(Fragaria × ananassa), callus induction and plant regeneration protocol was designed for solve browning problem. A formal L9(34)orthogonal experiment was designed to investigate the browning research in primary culture using explants of creeping stems excised from aseptic seedlings. Based on the improved medium above, single-factor experiments were conducted to select effective plant growth regulators and appropriate concentrations on blank MS medium. A L9(34)orthogonal experiment was designed to study effects of types and concentrations of plant growth regulators on callus induction, adventitious shoot formation, and plant regeneration. The results indicated that MS medium was inferior to B5 and 1/2MS in inhibiting browning condition. The browning rate was dramatically reduced while the callus still survived on the medium with the addition of 20 g·L-1 Na2S2O3. The callus induction and shoot formation of the explants were observed on MS + 0.1 mg· L-1 6-BA + 0.05 mg·L-1 2, 4-D + 0.1 mg·L-1 NAA with effective inhibiting browning. The optimal medium protocol for multiple shoots proliferation was MS + 0.1 mg·L-1 6-BA + 0.1 mg·L-1 NAA where the proliferation coefficient was 12.86 after 30 d. Healthily regenerated plants were yielded on culture medium 1/2MS + 1.0 g·L-1 AC after 35 d, with a rooting rate of 92.50%. More than 95% of plantlets survived after transplanting into field. The rapid propagation system is helpful to provide homogeneous progeny and high quality seedlings for cultivation of strawberry ‘Akihime' as well as a technical reference for other strawberry species in vitro regeneration. [ABSTRACT FROM AUTHOR]  相似文献   

2.
To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium con- taining chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sul- fate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to con- fluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical re- searches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.  相似文献   

3.
Young embryos of ricy (Oryza sativa L.subsp.japonica var.Guo-xiang No.1) were cultured on MS agar medium(2,4-D 2 mg/l).Calli were formed and subcultured on N6 agar medium (2,4-D 2 mg/l).After selection,the small,grainy and pale yellowish cell clusters with dense cytoplasm were used in protoplast preparation. Isolated protoplasts were cultured in N6 medium (2,4-D 1 mg/l,6-BA 0.2 mg/l)^1* with agarose block culture method.The protoplasts grew,divided and formed calli.After inducing differentiation,the regenerated mature plants were obtained.  相似文献   

4.
Young embryos of rice (Oryza sativa L. subsp, japonicavar. Guo-xiang No. 1) were cultured on MS agar medium(2,4-D 2 mg/l). Calli were formed and subcultured on N6 agar medium (2,4-D 2 mg/l ). After selection, the small, grainy and pale yellowish cell clusters with dense cytoplasm were used in protoplast preparation. Isolated protoplasts were cultured in N6 medium (2,4-D 1 mg/l, 6-BA 0.2 mg/l)~1 with agarose block culture method. The protoplasts grew, divided and formed calli. After inducing differentiation, the regenerated mature plants were obtained.  相似文献   

5.
Summary Cell suspension cultures of buffelgrass were established from two types of callus, a friable tan callus and a brown gelatinous callus, using Murashige and Skoog medium containing 13.6 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The friable callus formed a rapidly growing suspension culture, designated BG, which had a doubling time of 2.5 days. The gelatinous callus formed a very slow-growing suspension culture, designated BGG, which had a doubling time of 1 mo. During growth, the medium of the BGG line slowly increased in viscosity, becoming a thickened gel by the end of the subculture period. Both lines had high cell viability. Embryogenesis could be induced in both lines by culturing on charcoal-containing, 2,4-D-free medium. No embryos formed in the absence of charcoal.  相似文献   

6.
The major factors affecting plant regeneration in suspension culture were investigated.The resultsshow that,in order for cell clusters to differentiate directly in liquid medium,it is essential toestablish an embryogenic callus line with high potential for plant regeneration.Embryogenic calliwere suspended in AA basic medium supplemented with 2,4-D 1 mg/L,6-benzylaminopurine 0.5mg/L,CH 300 mg/L,sucrose 3% and mannitol 3% and subcultured 7 days for each passage.Aftermore than 6 months of culturing,a fine suspension culture of small cell clusters(SCC)wasestablished.The SCC,80-270μin diameter,were then transferred to a liquid medium(MSsupplemented with NAA 0.01 mg/L and 4-pyridylurae(4-PU)0.5 mg/L)and allowed to grow instationary culture.Finally direct differentiation from SCC was observed.Several factors in suspension-subculture exerted strong after-effects on differentiation ofSCC.Basicmedia,kinds and concentration combinations of auxin and cytokinin in the subculture media,duration of shaking at each subculture passage,and amount of packed cell volume transferred to newmedium at each subculture passage and so on,all these affected the frequency of differentiation ofSCC.Higher concentrations of NAA and kinetin in the differentiation medium inhibited the directdifferentiation of SCC.Low concentrations(0.01-0.1 mg/L)of NAA with 4-PU in thedifferentiation medium were helpful for the direct differentiation of SCC.The differentiated clusterspossessed typical embryogenic structure from which normal plantlets could develop after transferringto agar medium.  相似文献   

7.
The growth of Lavandula vera MM plant cell suspension culture and rosmarinic acid biosynthesis under elicitation with benzothiadiazole and methyl jasmonate were investigated. Upon elicitation with 50 μM methyl jasmonate, the production of rosmarinic acid was enhanced 2.4-fold (3348 mg/l) compared to the non-elicited cells. The influence of benzothiadiazole on rosmarinic acid biosynthesis was weaker and 12 h after its addition the achieved yields were 20–30% higher compared to the control variant at this time. The influence of both elicitors on rosmarinic acid secretion into the culture medium was also discussed.  相似文献   

8.
Using in vitro leaves of Zizyphus jujuba ‘Kongfusucui’ plantlet as explants,effects of culture method,phytohormone proportion and culture time on induction rate of adventitious shoot from leaves and effects of sucrose concentrations in rooting media on rooting of adventitious shoot were studied.The results show that induction rate of adventitious shoot by two-step culture method(firstly cultured on medium Ⅰ for four weeks then cultured on medium Ⅱ for three weeks) is significantly higher than that by one-step culture method(cultured continuously on medium Ⅰ for seven weeks).Phytohormone proportion in medium Ⅰ has an obviously influence on induction rate of adventitious shoot,which gradually increases with increasing of TDZ concentration in medium Ⅰ.And adding 1.0 mg·L-1 TDZ in medium Ⅰ leads to induction rate with above 80%.With culture time prolonging(cultured for 1,2,3 or 4 weeks on medium Ⅰ,respectively),induction rate increases gradually.Sucrose concentration has a significant effect on rooting of adventitious shoot,sucrose with higher concentration(30 g·L-1) is beneficial to rooting.According to induction rate and growth status of adventitious shoot,it is determined that optimal culture method of adventitious shoot induction from Z.jujuba ’Kongfusucui’ leaves is two-step culture method,that is,leaves firstly cultured on WPM medium containing 1.0 mg·L-1 TDZ and 0.5 mg·L-1 IAA for four weeks,and then cultured on WPM medium containing 0.5 mg·L-1 IAA and 1.0 mg·L-1 GA3 till adventitious shoot produced.  相似文献   

9.
By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesio  相似文献   

10.
培养基成分对东北红豆杉细胞生长和紫杉醇产量的影响   总被引:4,自引:0,他引:4  
司徒琳莉  李振山 《遗传》2001,23(4):325-328
在东北红豆杉(taxus cuspidate)细胞培养物的基本培养基中加入30mg.L^-12.4-D,可以提高细胞培养物的生长量,其相对最高生长量可以达到85.999mgFW/gFW.d;培养基中加入活性炭粉末1g.L^-1,可以克服植物细胞生长过程中的褐化问题;适当种类及含量的生长调节剂的加入:6-BA0.5mg.L^-1+KTmg.L^-1,可以使植物细胞合成和积累相对较多的紫杉醇(Taxol).  相似文献   

11.
A question was posed as to how the multicomponent and polyfunctional organelle dynamically changes during metazoan ontogenesis. The centrosome structure is gradually formed and its functions are switched on during early embryogenesis, one of which is the cell center formation. During cell differentiation, the condition of the cell center and surrounding structures may be different: first, the cell center is quite distinct; second, the cell center is absent due to redistribution of the microtubule organizing centers; third, the cell center disappears due to reversible or irreversible inactivation of the centrosome and other centers of microtubule organization. The assembly of the Golgi complex does not depend directly to the cell center presence. In some cell types, the Golgi complex is topologically associated with the cell center, while in others it exists as individual dictyosomes despite the cell center presence. In some other cell types, the common Golgi complex is assembled without the cell center, but in the presence of microtubules that are formed by noncentrosome centers of microtubule organization. In still others, degradation of both the cell center and the common Golgi complex takes place in the case of centrosome inactivation.  相似文献   

12.
Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measurements of cellular responses.Despite this need for speed and accuracy in cell counting, 71% of 400 researchers surveyed1 who count cells using a hemocytometer. While hemocytometry is inexpensive, it is laborious and subject to user bias and misuse, which results in inaccurate counts. Hemocytometers are made of special optical glass on which cell suspensions are loaded in specified volumes and counted under a microscope. Sources of errors in hemocytometry include: uneven cell distribution in the sample, too many or too few cells in the sample, subjective decisions as to whether a given cell falls within the defined counting area, contamination of the hemocytometer, user-to-user variation, and variation of hemocytometer filling rate2.To alleviate the tedium associated with manual counting, 29% of researchers count cells using automated cell counting devices; these include vision-based counters, systems that detect cells using the Coulter principle, or flow cytometry1. For most researchers, the main barrier to using an automated system is the price associated with these large benchtop instruments1.The Scepter cell counter is an automated handheld device that offers the automation and accuracy of Coulter counting at a relatively low cost. The system employs the Coulter principle of impedance-based particle detection3 in a miniaturized format using a combination of analog and digital hardware for sensing, signal processing, data storage, and graphical display. The disposable tip is engineered with a microfabricated, cell- sensing zone that enables discrimination by cell size and cell volume at sub-micron and sub-picoliter resolution. Enhanced with precision liquid-handling channels and electronics, the Scepter cell counter reports cell population statistics graphically displayed as a histogram.  相似文献   

13.
14.
Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls1-5. A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques6.Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer.The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed.Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.  相似文献   

15.
16.
17.
T. S. Leeson 《CMAJ》1965,93(17):921-932
The use of the electron microscope has added much to our knowledge of the cell. The fine structure of the component parts of the nucleus and the cytoplasm is described, and their functions are indicated. The nature and structural modifications of the plasma membrane are illustrated with particular reference to function. To illustrate the interrelationships of the nucleus and cytoplasm, the theory of protein secretion is discussed, the secretion of a particular protein or polypeptide being determined by a particular nucleotide sequence in the desoxyribonucleic acid of a chromosome, that is, by a gene. This information is transferred from nucleus to cytoplasm. It is in the cytoplasm that the majority of the work is performed while the nucleus directs the work of the cell.  相似文献   

18.
The dissemination of tumor cells prior to the surgical resection of early stage tumors poses a serious risk to the disease free survival of cancer patients. This risk arises from the latent capacity of these cells to form solid metastatic lesions after a prolonged period of dormancy, exacerbated by the fact that these cells are often refractory to adjuvant chemotherapeutic protocols. Ensuring the long term survival of cancer patients therefore necessitates an understanding of the mechanisms of tumor cell dormancy and the accompanying drug resistance. Experiments designed to compare the biological behavior of metastatic versus non-metastatic variants of tumor cells provide evidence that there exists a phenomenon of single-cell dormancy which may depend on a reciprocal dialogue between the tumor cell and the tissue microenvironment. Through a combination of 3-dimensional cell culture technique and in vivo models investigators are now beginning to elucidate the molecular mechanisms underlying this phenomenon. Here we review the results of a series of experiments describing the role of cell adhesion events in dictating tumor cell behavior, including the balance between proliferation and dormancy, and the acquisition of drug resistance.  相似文献   

19.
睾丸支持细胞对精原干细胞发育的调节   总被引:1,自引:0,他引:1  
精原干细胞(spermatogonial stem cells,SSCs)是位于睾丸曲精小管基膜上既能自我更新,又能定向分化的一类原始精原细胞.鉴于其独具的生物学特性,SSCs研究在干细胞生物学、医学、畜牧业等领域均具有重要意义,但目前有关其更新、分化的调控机制仍不清楚.干细胞的发育受其外部特定发育环境及其内在因素的综合调控.最近以睾丸支持细胞为主要结构组分的发育环境对SSCs行为的调控研究备受关注且取得快速进展.综合相关报道,主要就哺乳动物睾丸支持细胞对SSCs更新、分化的调节进行了评述,以期为本领域及其他干细胞研究提供借鉴.  相似文献   

20.
Colonial aggregates of Methanosarcina (= Methanococcus) mazei were examined with scanning and transmission electron microscopy. Cells are irregular and grouped into multicellular sarcinal colonies, which may disaggregate in older cultures. The protoplast is bounded by a typical trilaminar plasma membrane, outside of which is a matrix of loose fibrils. The presence and compactness of matrix material are responsible for the close packing of cells, and colony disaggregation seems to be the result of matrix shedding and degradation. The cell envelope contains complex hetero polysaccharides of N-acetylgalactosamine and galacturonic and glucuronic acids. Polymers extruded by M. mazei are likely quite adhesive in nature, accounting for its strong adherence to surfaces and hardiness compared with many other methanogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号