首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
2.
A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans-a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways. We also applied the human interactome network to cancer genomics data and identified several interaction subnetworks activated in cancer. This integrative analysis provides a comprehensive framework for exploring the human protein interaction network.  相似文献   

3.
Prediction of protein function from protein sequence and structure   总被引:1,自引:0,他引:1  
The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.  相似文献   

4.
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks.  相似文献   

5.
Prediction of protein function using protein-protein interaction data.   总被引:8,自引:0,他引:8  
Assigning functions to novel proteins is one of the most important problems in the postgenomic era. Several approaches have been applied to this problem, including the analysis of gene expression patterns, phylogenetic profiles, protein fusions, and protein-protein interactions. In this paper, we develop a novel approach that employs the theory of Markov random fields to infer a protein's functions using protein-protein interaction data and the functional annotations of protein's interaction partners. For each function of interest and protein, we predict the probability that the protein has such function using Bayesian approaches. Unlike other available approaches for protein annotation in which a protein has or does not have a function of interest, we give a probability for having the function. This probability indicates how confident we are about the prediction. We employ our method to predict protein functions based on "biochemical function," "subcellular location," and "cellular role" for yeast proteins defined in the Yeast Proteome Database (YPD, www.incyte.com), using the protein-protein interaction data from the Munich Information Center for Protein Sequences (MIPS, mips.gsf.de). We show that our approach outperforms other available methods for function prediction based on protein interaction data. The supplementary data is available at www-hto.usc.edu/~msms/ProteinFunction.  相似文献   

6.

Background  

Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments.  相似文献   

7.
计算方法在蛋白质相互作用研究中的应用   总被引:3,自引:1,他引:2  
计算方法在蛋白质相互作用研究的各个阶段扮演了一个重要的角色。对此,作者将从以下几个方面对计算方法在蛋白质相互作用及相互作用网络研究中的应用做一个概述:蛋白质相互作用数据库及其发展;数据挖掘方法在蛋白质相互作用数据收集和整合中的应用;高通量方法实验结果的验证;根据蛋白质相互作用网络预测和推断未知蛋白质的功能;蛋白质相互作用的预测。  相似文献   

8.
Bu D  Zhao Y  Cai L  Xue H  Zhu X  Lu H  Zhang J  Sun S  Ling L  Zhang N  Li G  Chen R 《Nucleic acids research》2003,31(9):2443-2450
Interaction detection methods have led to the discovery of thousands of interactions between proteins, and discerning relevance within large-scale data sets is important to present-day biology. Here, a spectral method derived from graph theory was introduced to uncover hidden topological structures (i.e. quasi-cliques and quasi-bipartites) of complicated protein-protein interaction networks. Our analyses suggest that these hidden topological structures consist of biologically relevant functional groups. This result motivates a new method to predict the function of uncharacterized proteins based on the classification of known proteins within topological structures. Using this spectral analysis method, 48 quasi-cliques and six quasi-bipartites were isolated from a network involving 11,855 interactions among 2617 proteins in budding yeast, and 76 uncharacterized proteins were assigned functions.  相似文献   

9.
10.
We introduce a framework for predicting novel protein-protein interactions (PPIs), based on Fisher's method for combining probabilities of predictions that are based on different data sources, such as the biomedical literature, protein domain and mRNA expression information. Our method compares favorably to our previous method based on text-mining alone and other methods such as STRING. We evaluated our algorithms through the prediction of experimentally found protein interactions underlying Muscular Dystrophy, Huntington's Disease and Polycystic Kidney Disease, which had not yet been recorded in protein-protein interaction databases. We found a 1.74-fold increase in the mean average prediction precision for dysferlin and a 3.09-fold for huntingtin when compared to STRING. The top 10 of predicted interaction partners of huntingtin were analysed in depth. Five were identified previously, and the other five were new potential interaction partners. The full matrix of human protein pairs and their prediction scores are available for download. Our framework can be extended to predict other types of relationships such as proteins in a complex, pathway or related disease mechanisms.  相似文献   

11.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

12.
13.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

14.
MOTIVATION: Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. RESULTS: We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.  相似文献   

15.
Protein-protein interactions play crucial roles in biological processes. Experimental methods have been developed to survey the proteome for interacting partners and some computational approaches have been developed to extend the impact of these experimental methods. Computational methods are routinely applied to newly discovered genes to infer protein function and plausible protein-protein interactions. Here, we develop and extend a quantitative method that identifies interacting proteins based upon the correlated behavior of the evolutionary histories of protein ligands and their receptors. We have studied six families of ligand-receptor pairs including: the syntaxin/Unc-18 family, the GPCR/G-alpha's, the TGF-beta/TGF-beta receptor system, the immunity/colicin domain collection from bacteria, the chemokine/chemokine receptors, and the VEGF/VEGF receptor family. For correlation scores above a defined threshold, we were able to find an average of 79% of all known binding partners. We then applied this method to find plausible binding partners for proteins with uncharacterized binding specificities in the syntaxin/Unc-18 protein and TGF-beta/TGF-beta receptor families. Analysis of the results shows that co-evolutionary analysis of interacting protein families can reduce the search space for identifying binding partners by not only finding binding partners for uncharacterized proteins but also recognizing potentially new binding partners for previously characterized proteins. We believe that correlated evolutionary histories provide a route to exploit the wealth of whole genome sequences and recent systematic proteomic results to extend the impact of these studies and focus experimental efforts to categorize physiologically or pathologically relevant protein-protein interactions.  相似文献   

16.

Background

Protein-protein interactions play a critical role in protein function. Completion of many genomes is being followed rapidly by major efforts to identify interacting protein pairs experimentally in order to decipher the networks of interacting, coordinated-in-action proteins. Identification of protein-protein interaction sites and detection of specific amino acids that contribute to the specificity and the strength of protein interactions is an important problem with broad applications ranging from rational drug design to the analysis of metabolic and signal transduction networks.

Results

In order to increase the power of predictive methods for protein-protein interaction sites, we have developed a consensus methodology for combining four different methods. These approaches include: data mining using Support Vector Machines, threading through protein structures, prediction of conserved residues on the protein surface by analysis of phylogenetic trees, and the Conservatism of Conservatism method of Mirny and Shakhnovich. Results obtained on a dataset of hydrolase-inhibitor complexes demonstrate that the combination of all four methods yield improved predictions over the individual methods.

Conclusions

We developed a consensus method for predicting protein-protein interface residues by combining sequence and structure-based methods. The success of our consensus approach suggests that similar methodologies can be developed to improve prediction accuracies for other bioinformatic problems.  相似文献   

17.
Predicting protein functions computationally from massive protein-protein interaction (PPI) data generated by high-throughput technology is one of the challenges and fundamental problems in the post-genomic era. Although there have been many approaches developed for computationally predicting protein functions, the mutual correlations among proteins in terms of protein functions have not been thoroughly investigated and incorporated into existing prediction methods, especially in voting based prediction methods. In this paper, we propose an innovative method to predict protein functions from PPI data by aggregating the functional correlations among relevant proteins using the Choquet-Integral in fuzzy theory. This functional aggregation measures the real impact of each relevant protein function on the final prediction results, and reduces the impact of repeated functional information on the prediction. Accordingly, a new protein similarity and a new iterative prediction algorithm are proposed in this paper. The experimental evaluations on real PPI datasets demonstrate the effectiveness of our method.  相似文献   

18.
Sun J  Xu J  Liu Z  Liu Q  Zhao A  Shi T  Li Y 《Bioinformatics (Oxford, England)》2005,21(16):3409-3415
MOTIVATION: The increasing availability of complete genome sequences provides excellent opportunity for the further development of tools for functional studies in proteomics. Several experimental approaches and in silico algorithms have been developed to cluster proteins into networks of biological significance that may provide new biological insights, especially into understanding the functions of many uncharacterized proteins. Among these methods, the phylogenetic profiles method has been widely used to predict protein-protein interactions. It involves the selection of reference organisms and identification of homologous proteins. Up to now, no published report has systematically studied the effects of the reference genome selection and the identification of homologous proteins upon the accuracy of this method. RESULTS: In this study, we optimized the phylogenetic profiles method by integrating phylogenetic relationships among reference organisms and sequence homology information to improve prediction accuracy. Our results revealed that the selection of the reference organisms set and the criteria for homology identification significantly are two critical factors for the prediction accuracy of this method. Our refined phylogenetic profiles method shows greater performance and potentially provides more reliable functional linkages compared with previous methods.  相似文献   

19.
Song B  Wang F  Guo Y  Sang Q  Liu M  Li D  Fang W  Zhang D 《Proteins》2012,80(7):1736-1743
Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.  相似文献   

20.
MOTIVATION: Uncovering the protein-protein interaction network is a fundamental step in the quest to understand the molecular machinery of a cell. This motivates the search for efficient computational methods for predicting such interactions. Among the available predictors are those that are based on the co-evolution hypothesis "evolutionary trees of protein families (that are known to interact) are expected to have similar topologies". Many of these methods are limited by the fact that they can handle only a small number of protein sequences. Also, details on evolutionary tree topology are missing as they use similarity matrices in lieu of the trees. RESULTS: We introduce MORPH, a new algorithm for predicting protein interaction partners between members of two protein families that are known to interact. Our approach can also be seen as a new method for searching the best superposition of the corresponding evolutionary trees based on tree automorphism group. We discuss relevant facts related to the predictability of protein-protein interaction based on their co-evolution. When compared with related computational approaches, our method reduces the search space by approximately 3 x 10(5)-fold and at the same time increases the accuracy of predicting correct binding partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号