首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
【目的】探讨真姬菇Hypsizygus marmoreus菌株菌丝体对硒的耐受特性。【方法】利用平板培养法测定不同硒浓度处理下菌丝平均生长速率,拟合硒与菌丝生长速率的关系,记录菌丝萌发、菌落形态特征,做还原培养验证,利用显微镜观察硒对菌丝分枝、大小、锁状联合形态以及表面结构的影响。【结果】真姬菇菌丝体对硒耐受特性的研究表明:当外源硒浓度≤50 mg/L时,对真姬菇菌丝生长有促进作用,促进效果因菌株不同而存在差异,但与Control Check(CK)相比均无显著差异(P0.05)。当外源硒浓度≥75 mg/L时,对真姬菇菌丝生长产生抑制,真姬菇菌丝对硒最大耐受浓度为150-200 mg/L。还原培养表明:这种抑制具有恢复性;硒浓度与菌丝平均生长速度符合Cubic回归曲线,且可决系数(即拟合度)较大。显微镜观察结果表明:在外源硒浓度较低时,真姬菇菌丝体粗细均匀、健壮饱满、分枝较多、表面光滑、锁状联合明显、结构饱满。在外源硒浓度较高时,菌丝粗细不一,皱缩呈长扁条形,锁状联合结构塌陷、干瘪,表面凹凸不平,变成类似竹节状结构,菌丝尖端逐渐被球状分生孢子替代,部分分枝甚至完全异化为分生孢子或厚垣孢子。【结论】硒浓度≤50 mg/L时对真姬菇菌丝生长有促进作用,硒浓度≥75 mg/L时有抑制作用,高浓度硒对菌丝有毒害作用,但这种毒害作用是可逆的。  相似文献   

2.
蓝光诱导蛹虫草菌丝类胡萝卜素的积累   总被引:2,自引:0,他引:2  
蛹虫草(Cordyceps militaris L.)在培养时受蓝光诱导,其菌丝体中有高产量的类胡萝卜素积累.当温度为25℃且蓝光光照强度为6.5μmol·m-2·S-1时,菌丝体的类胡萝卜素含量在含蚕蛹粉的培养基上24h达到最高峰的495.5μg/g FW;而在不含蚕蛹粉的培养基上72h才达最高峰414.1μg/g FW.蛹虫草菌丝类胡萝卜素的积累也受蓝光光照强度的影响,最适光照强度可随培养时间的不同而有所变化.此外,黑暗培养时间的长短和温度也可共同影响蛹虫草菌丝产类胡萝卜素时对蓝光的敏感性.  相似文献   

3.
生物钟的节律振荡器主要成分之间的关系构成了转录-翻译负反馈环,并以此调控生物体的生理生化反应和生长发育等.以不同时间的蓝光照射和蛋白酶体抑制剂MG132处理蛹虫草菌丝体,通过实时荧光PCR分析其中节律振荡器主要成分的3个基因Cmfrq、Cmwc-1和Cmwc-2转录水平变化,以期确定3个基因在蛹虫草中的相互关系和变化规...  相似文献   

4.
刘晴  万佳欣  张雨晨  董彩虹 《菌物学报》2018,37(8):1054-1062
蛹虫草已经成为我国乃至东南亚地区极其重要的食药用真菌,虽然其子实体已经实现规模化生产,但在产业发展中遇到许多问题,真菌病害为其中之一,如引起蛹虫草“白毛病”病害的虫草生齿梗孢Calcarisporium cordycipiticola。本研究以虫草生齿梗孢为对象,研究了其生物学特性、发病特性及侵染特点。结果表明:该病原菌菌丝分枝较多,短时间内产生大量分生孢子;最适生长温度为25℃,此温度有利于该病害快速传播;其分生孢子比蛹虫草分生孢子耐紫外能力强。栽培过程中该病害多发生在蛹虫草生长发育后期,可以侵染培养基表面、子实体底部、中部和顶端等各个部位。人工接种发现该病原菌可以侵染蛹虫草生长发育的任意阶段,后期子实体被白毛覆盖。对峙实验发现虫草生齿梗孢菌丝逐渐生长到蛹虫草菌丝上,但未发现两菌丝互相缠绕的现象。对该病原菌基本生物学研究,将为建立该病害的早期检测及预防方法提供依据。  相似文献   

5.
<正> 1.埃里砖格孢属 中国新记录属 Embellisia Simmons,Mycologia 63,1971 菌丝体典型的丛梗状,光滑或粗糙。菌丝体可产生厚垣孢子。分生孢子梗从菌丝或厚垣孢子上生出,分枝或少分枝,有隔膜,直立或在产孢处曲膝状弯曲。孔生孢子褐色,光滑或稍粗糙,单生,倒卵形,卵圆形、椭圆形或近圆柱形,直或弯曲,具横隔膜和斜隔膜,偶见纵隔膜。隔膜比孢壁加厚、  相似文献   

6.
【背景】蛹虫草是一种珍稀食药用菌,类胡萝卜素不仅为其重要活性成分,而且影响子实体的外观品相,但是类胡萝卜素产生的影响因素不明。【目的】揭示氮源对蛹虫草生长和类胡萝卜素产生的影响。【方法】测定不同氮源培养基中菌株生长速度、分生孢子产生及类胡萝卜含量,筛选菌株生长的最适氮源,进一步研究不同浓度的氮源对蛹虫草生长及类胡萝卜素产生的影响,并测定不同光照条件下氮源浓度对蛹虫草子实体类胡萝卜素产生的影响。【结果】蛹虫草在不同的氮源培养基中菌落形态和类胡萝卜素产生存在明显差异。麦麸和黄豆粉培养基中菌株生长速度最快,但是菌落稀疏,正面分别呈现荧光黄色和极微弱红色;蛋白胨和酵母提取物培养基中菌落致密,产孢量极显著高于其它氮源培养基(P0.01),菌落正面为橙黄色;甘氨酸和柠檬酸为氮源时完全没有色素产生,其它无机和氨基酸氮源培养基平板背面有微量色素产生。固体和液体静置培养条件下均发现蛋白胨浓度在0-3%的范围内,随着浓度的增加,类胡萝卜素含量增加;子实体栽培中不同的氮源浓度均表现为蓝光光照条件下类胡萝卜素含量显著高于白光;而在白光和蓝光光照条件下均表现为蛋白胨浓度为1%时类胡萝卜素含量最高,分别为2 809.38±386.24μg/g和4 093.75±518.37μg/g。【结论】氮源种类和浓度显著影响蛹虫草类胡萝卜素的产生,蓝光光照和1%蛋白胨浓度为子实体类胡萝卜素产生的最佳条件,这为栽培富含类胡萝卜素的蛹虫草子实体提供了试验依据。  相似文献   

7.
蛹虫草(Cordycepsmilitaris L·)在培养时受蓝光诱导,其菌丝体中有高产量的类胡萝卜素积累。当温度为25℃且蓝光光照强度为6·5μmol·m-2·S-1时,菌丝体的类胡萝卜素含量在含蚕蛹粉的培养基上24h达到最高峰的495·5μg/gFW;而在不含蚕蛹粉的培养基上72h才达最高峰414·1μg/gFW。蛹虫草菌丝类胡萝卜素的积累也受蓝光光照强度的影响,最适光照强度可随培养时间的不同而有所变化。此外,黑暗培养时间的长短和温度也可共同影  相似文献   

8.
杨涛  董彩虹 《菌物研究》2013,(2):146-146
蛹虫草[Cordyceps militaris(L.)Link],隶属于肉座菌目(Hypocreales),麦角菌科(Clavicipitaceae),虫草属(Cordyceps),其滋补作用和药用功效与名贵但难以人工培养的冬虫夏草相近,并日渐成为冬虫夏草的理想替代品。蛹虫草为虫草属模式种,分布广泛,在人工培养基或昆虫蛹体上能产生无性和有性阶段,其基因组已公布,成为大型真菌生物学研究的理想模型。对真菌而言,光可影响其生长发育、生理周期、形态变化及次级代谢产物产生,光照是蛹虫草子实体生长发育的必要条件,并能够调控其类胡萝卜素的产生。该研究采用5株代表性的蛹虫草菌株,包括1株退化菌株、1株白化菌株和3株在栽培中广泛运用但子实体形态各异的菌株作为对象,研究其光形态建成、克隆蓝光受体基因Cmwc-1并测定在不同光照条件下其表达量的变化。结果表明,除白化菌株外,光照刺激促进菌丝色素的形成,且蓝光的作用优于白光。光照抑制生长速度,所有的菌株在黑暗条件下生长最快,白光次之,蓝光最慢,退化菌株的生长速度在3种培养条件下均优于其他菌株。此外,光照促进分生孢子的产生。退化菌株在白光和蓝光条件下产孢量均最大。为了从分子层面阐明蛹虫草对光刺激的应答反应,该研究通过Hai-l tail PCR和基因步移的方法克隆得到了蓝光受体基因Cmwc-1。CmWC-1是1个GA-TA-Zinc finger型转录因子,含有谷氨酸富集结构域,LOV(Light,Oxygen,or Voltage),PAS(Per-Arn-t Sim)和锌指结构域,与粗糙脉孢霉的蓝光受体结构域组成基本一致。对5个研究对象的CmWC-1序列比较分析发现3个菌株在谷氨酰胺富集结构域缺失5个谷氨酰胺。基于JTT模型的贝叶斯树和最大似然法构建的WC-1系统树,其树形和ITS序列构建的系统树基本一致,且粪壳菌纲的一些主要类群以较高的支持率被划分为单系,说明WC-1可以作为系统进化分析的一个参照。Cmwc-1在黑暗条件下表达,光照刺激后表达量增加,待光照时间持续30 min,其表达量将不再上升,即光适应现象。蛹虫草光受体基因的研究将为子实体发育研究奠定基础。  相似文献   

9.
刘会梅  张天宇 《菌物学报》2006,25(2):321-322
小带孢霉属中国新记录属 菌落平展,点状或垫状,中褐色至暗褐色,有时暗红色或近黑色.菌丝体埋生或常表生.无子座.刚毛和附属丝缺.分生孢子梗分化不明显,丛生或散生,短,不分枝或近基部有稀疏分枝,弯曲,褐色或青黄褐色,光滑或稍粗糙.产孢细胞单芽生,合生,顶生,有限生长,圆柱状或桶状.分生孢子有时单生,多数情况下形成长的但不分枝或分枝向项的链,难以脱落,椭圆形,桶形或倒棍棒形,基部常钝圆或平截,中度褐色、暗褐色或青黄褐色,光滑或粗糙,直或弯曲,具1-多个横隔膜.  相似文献   

10.
小带孢霉属中国新记录属Taeniolella S.Hughes,Can.J.Bot.36:816,1958菌落平展,点状或垫状,中褐色至暗褐色,有时暗红色或近黑色。菌丝体埋生或常表生。无子座。刚毛和附属丝缺。分生孢子梗分化不明显,丛生或散生,短,不分枝或近基部有稀疏分枝,弯曲,褐色或青黄褐色,光滑或稍粗糙  相似文献   

11.
刘娟  周影  王芹  张春杨  薛强  祝长杰 《菌物学报》2020,39(12):2328-2337
柞蚕蛹虫草中含有虫草素、腺苷、多糖等多种活性成分,具有提高免疫力、抗疲劳、保护心脑血管、抗癌等方面的作用,是冬虫夏草的良好替代品。以柞蚕蛹虫草的继代培育为基础,分别检测蛹虫草菌在不同传代次数时柞蚕蛹虫草子实体生长状态、蛹虫草中腺苷、虫草素、虫草多糖含量及蛹虫草菌菌丝、分生孢子中活性氧的分布。第1代蛹虫草菌接种后柞蚕蛹出现腐烂现象;第2、3代培育的子实体生长量、腺苷及虫草素含量均较高;第4代子实体生长量、腺苷及虫草素含量均出现大幅下降的现象。柞蚕蛹虫草中虫草多糖含量在传代过程中也逐渐降低,但降低幅度较腺苷和虫草素缓慢。第2代培育的柞蚕蛹虫草子实体生长状态优于第3代,故第2代蛹虫草菌更适合应用于批量生产。蛹虫草菌退化后含有活性氧的分生孢子比例增大,这可能是发生退化的表象之一。  相似文献   

12.
怀美玉  刘晴  徐方旭  王升厚  董彩虹 《菌物学报》2022,41(11):1819-1830
蛹虫草菌株在继代培养和低温长期保藏过程中极易退化导致子实体产量下降,对产业造成重大影响。本研究以正常菌株、PDA斜面长期4 ℃保藏导致退化的菌株和连续继代培养的菌株为材料,观察其子实体、菌落、菌丝形态和分生孢子数量,对菌丝细胞核、线粒体、活性氧积累和芽生孢子内脂滴进行染色观察;并对菌丝中虫草素、腺苷和麦角甾醇含量进行比较分析。结果表明PDA斜面长期4 ℃保藏和连续继代培养导致的蛹虫草菌株退化表型大多数一致,即退化菌株较正常菌株子实体产量降低、菌丝粘连打结、分生孢子数量显著降低、菌丝活性氧含量升高、细胞内线粒体数量减少、芽生孢子脂滴由弥散的小脂滴融合为大脂滴。然而,在菌落见光转色方面,长期低温保藏退化菌株基本不转色,而继代培养退化菌株转色不稳定;长期保藏退化菌株菌丝细胞核数目无明显变化,继代培养退化菌株细胞核数量明显减少;长期保藏退化菌株菌丝中虫草素、腺苷和麦角甾醇含量较正常菌株降低58%、41%和70%,继代培养退化菌株麦角甾醇含量无明显变化。因此,显微观察菌丝是否出现粘连打结及氮蓝四唑NBT检测菌丝活性氧含量,操作简单、用时较短,可用于大规模生产中蛹虫草菌株退化的检测手段;线粒体和脂滴染色也可作为退化菌株的鉴别方法;而生产中常用的通过菌落见光转色判断菌株优劣的方法需要慎重。继代培养菌株第4代开始出现明显的退化特征,因此在生产中使用的菌株最好控制在继代培养3代以内。  相似文献   

13.
光调控真菌的生长发育和代谢产物合成,是大多数食用菌子实体分化必不可少的环境因子。蛹虫草是一种具有重要药用价值的食用真菌,光因素对蛹虫草的分生孢子数量、生长速率、子实体发育、昼夜节律以及次级代谢产物虫草素和类胡萝卜素的合成均有较大的影响。目前,基于蛹虫草全基因组的解析和遗传操作系统的建立,已鉴定出7种光受体,white collar-1(WC-1)、WC-2、Drosophila-Arabidopsis- Synechocystis-human type cryptochromes(CRY-DASH)、CRY-2、环丁烷嘧啶二聚体光裂合酶(cyclobutane pyrimidine dimer,CPD)、VIVID(VVD)和光敏色素(phytochrome,PHY)。本文较系统地总结了上述光受体的蛋白结构特征,全面阐述了光受体介导光信号调控蛹虫草菌丝生长、子实体发育及次级代谢产物合成等方面的分子机制,并对后续研究进行了展望,为深入研究蛹虫草光受体的具体功能和相关机制提供参考。  相似文献   

14.
刘柳  李兵  郭顺星  王弘  王志刚 《菌物学报》2021,40(11):2926-2939
蛹虫草子实体形成及发育的蛋白分子机制尚不清楚,本研究引入SWATH非标记定量蛋白质组学技术,对蛹虫草Cordyceps militaris 905菌株的菌丝体(mycelium,My)、原基(primordium,Po)、生长期子实体(developmental fruiting body,DF)和成熟期子实体(mature fruiting body,MF)进行了比较蛋白质组学分析。经搜库比对,从蛹虫草的My、Po、DF和MF中依次鉴定蛋白1 136个、1 090个、1 018个和997个(global FDR 1%),经维恩分析后获得C. militaris 905蛹虫草表达蛋白1 578个。在此基础上,SWATH非标记技术定量蛋白1 109个。本研究获得了蛹虫草Po期与My期、DF期与Po期、MF期与DF期的差异表达蛋白,依次为115个、352个和104个,并对菌丝体分化形成原基的差异表达蛋白进行了重点解析。GO注释结果表明,Po期与My期差异表达蛋白以有机含氮类化合物代谢为主,其中AMP(活性成分虫草素合成的中间产物)从头生物合成途径富集最为显著。约1/5的差异表达蛋白参与氧化还原反应,还原酶活性的蛋白在原基中几乎都上调表达,而氧化功能的蛋白受到抑制,表明蛹虫草原基分化可能受到氧化应激的诱导。蛋白互作网络分析结果进一步表明,氧化还原反应与核苷类物质代谢相关联,可能通过影响AMP从头生物合成途径来调控虫草素的生物合成。对蛹虫草子实体系统的蛋白质组学研究和解析有利于揭示子实体形成的蛋白分子机制,为蛹虫草的基础和栽培研究提供了理论支撑。  相似文献   

15.
刘晴  刘梦潜  王芬  怀美玉  王丽  董彩虹 《菌物学报》2022,41(11):1761-1771
蛹虫草是一种重要的食药用真菌,其子座可规模化栽培。然而,栽培中菌种极易退化,成为限制其发展的重要因素,野生种质资源为蛹虫草栽培生产菌株的重要来源。本研究对东北和山东部分地区蛹虫草资源进行了持续调查,对其生态分布和宏观、微观形态等进行了系统研究。从5个地点共采集野生蛹虫草标本414份,寄主绝大多数为鳞翅目昆虫的蛹,少数为鳞翅目昆虫的幼虫和茧。野生蛹虫草子座单生或2-25根,长1-17 cm,棒状、扁平状或不规则畸形,扁平状子座常具纵沟,部分可分支;子座可从寄主头、胸和腹部各部位长出,其中以头部为主。子座地上部分长1-6 cm,颜色呈深橙黄色。可育部位长0.5-4 cm,宽1.2-6 mm,大多数与不育柄部分界明显;地下部分0.5-11 cm,其长度与腐殖质厚度相关。首次明确观察到蛹虫草菌索,菌索连接蛹体和子座,或单从子座、蛹体上长出,但不是所有野生蛹虫草都有菌索。蛹虫草菌索与子座内部的疏丝组织菌丝形态各异,菌索菌丝中间膨大。人工栽培与野外采集的子座宏观形态差异明显,但子囊和子囊孢子形态无明显差异。通过野外采集和调研,获得了大量的野生蛹虫草种质资源,为解决蛹虫草种业问题奠定基础。  相似文献   

16.
刘晴  王芬  徐方旭  徐岩岩  董彩虹 《菌物学报》2021,40(11):2962-2980
蛹虫草规模化栽培过程中,真菌病害普遍发生且危害严重。本研究对人工栽培蛹虫草中真菌病害进行调研,对病原真菌进行分离、纯化、鉴定及致病性检验,并分析病害发生的特点。结果发现引起蛹虫草病害的病原真菌主要有虫草生齿梗孢、产扁虫菌素单端孢、镰刀菌、裂褶菌、哈茨木霉、淡紫拟青霉、稻绿核菌、粉红枝穗霉、卵孢单端孢、扩展青霉、黄曲霉和黑曲霉。其中虫草生齿梗孢为引起蛹虫草侵染性病害的主要病原真菌。虫草生齿梗孢、产扁虫菌素单端孢、镰刀菌、裂褶菌和哈茨木霉主要为害蛹虫草子实体;淡紫拟青霉、稻绿核菌、粉红枝穗霉、卵孢单端孢、扩展青霉、黄曲霉和黑曲霉主要为害栽培料与蛹虫草菌丝体。镰刀菌、裂褶菌、哈茨木霉、淡紫拟青霉、稻绿核菌和粉红枝穗霉为引起蛹虫草病害的首次报道。本研究为蛹虫草病害防控奠定基础,以促进产业健康发展。  相似文献   

17.
金武  董志超  陈春 《菌物学报》2021,40(10):2833-2842
新蚜虫疠霉Pandora neoaphidis是虫霉菌亚门Entomophthoromycotina虫霉目Entomophthorales的代表菌,是世界上流行最广的蚜科专化性病原真菌。其主动弹射分生孢子的能力是引发高强度流行病控制蚜虫种群的关键原因。本研究以新蚜虫疠霉菌丝制备的弹孢胶囊(模拟感病蚜尸)为研究对象,在室内对其在蓝光照射和黑暗条件下的产孢量和分生孢子弹射距离进行了测量;同时利用高速显微摄像技术对弹孢胶囊的分生孢子弹射进行了拍摄观察和软件视频分析,利用MATLAB软件分析图像视频并进行了模型构建。结果表明:新蚜虫疠霉菌丝胶囊经蓝光照射处理后弹射出来的分生孢子数量和孢子弹射速度均显著高于黑暗条件下的处理(P<0.05);分析高速显微拍摄视频计算所得的孢子弹射初始速度从114mm/s到2.07m/s不等,速度在弹射后期会受到空气阻力的影响而急速下降;采用Stokes模型进行预测的结果显示其分生孢子的弹射路径与实际路径拟合度较高(R2=0.8941)。综上,本研究结果为深入理解新蚜虫疠霉弹射相关的流行扩散模型和生物学适态机制提供了基础数据。  相似文献   

18.
王徐萍  刘晴  董彩虹 《菌物学报》2021,40(7):1723-1736
ku70ku80是非同源末端连接修复通路的关键基因,在一些丝状真菌中其基因敲除株可作为底盘菌株,提高同源重组效率和基因敲除效率。本研究从蛹虫草基因组中鉴定得到Cmku70Cmku80基因,分别编码分子量为71.50kDa和80.96kDa的蛋白,均含有Ku core结构域,预测均定位于细胞核。系统进化分析表明Ku70和Ku80蛋白在真菌中广泛存在,且具有保守性。通过农杆菌介导的同源重组法敲除Cmku70,发现不影响蛹虫草菌丝生长、见光转色、分生孢子形成及形态等无性生长过程,但敲除后不能形成子实体,因此Cmku70敲除株不宜用作蛹虫草生长发育相关基因高效敲除的底盘菌株。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号