首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
本文报道大叶相思的结瘤固氮和氢酶活性的研究结果。大叶相思结瘤状况与其他含羞草亚科的树种相似,刚形成的幼瘤为单生球状或椭圆形,以后顶端伸长或分叉,呈分叉状、姜状和扇状。同一植株的不同成熟度根瘤的固氮活性也不同,成熟壮瘤固氮活性最高,幼瘤次之,衰老瘤最低。不同立地条件下种植的大叶相思根瘤固氮活性虽有差异,但生长在pH4.7的酸性红壤中的大叶相思,根瘤固氮活性仍具有较高水平。大叶相思根瘤固氮活性也有明显的季节变化,夏秋较高,春冬较低。根瘤离体后7小时内固氮活性变化不大,甚至在离体后21小时内仍维持一定水平的固氮活性。大叶相思根瘤具有吸氢酶,其吸H_2活性在最初3小时内随时间延长而升高,3—7小时内仍维持一定水平。在根瘤固氮系统中注入外源分子H_2,可提高固氮酶活性,外源H_2最适浓度为7.5%。由于其根瘤具有催化吸收分子H_2的氢酶系统,能吸收利用固氮反应所放出的大量H_2,因而能更有效地利用光合产物于固氮过程。大叶相思根瘤离体后能较长时间维持高的固氮活性水平,可能与其吸H_2酶系统有关。  相似文献   

2.
本文研究气候因子对银合欢共生固氮的影响。银合欢结瘤固氮有明显的季节性变化,夏秋结瘤多,固氮酶活性高,冬天及早春结瘤少,活性低。银合欢结瘤固氮的适宜温度为25-30℃,低于10℃或高于30℃时活性显著下降,处于0℃或45℃时活性极低,逆境温度处理时间越长活性越低。温度相近的条件下,土壤湿度对银合欢结瘤固氮的影响尤其突出,水分过多或干旱都严重影响结瘤固氮。遮光条件下银合欢根瘤固氮酶活性显著降低,晴天取样的根瘤固氮酶活性比阴天的高。银合欢根瘤固氮酶活性在一天中出现两个峰,第一个峰在11时,第二个峰在17-20时。离体根瘤的固氮酶活性随离体时间的延长而降低,表明植株光合作用产物对根瘤的供应及其在根瘤中的贮备对固氮酶活性有显著影响。  相似文献   

3.
台湾相思的根系具有多年生的根瘤,根瘤初发生时球状,以后发育成分叉瘤和扇状瘤。根瘤固氮活性因苗龄、成熟度不同而有明显差异。环境条件影响结瘤及固氮活性。15℃时结瘤受到明显抑制,固氮作用最适温度条件是25~30℃。光照不足降低根瘤固氮活性。短期轻度干旱不影响根瘤固氮活性,但持续干旱使固氮活性明显下降。pH4.5~8.5条件能正常结瘤,pH5.5时结瘤最好。根瘤固氮作用时不释放H_2,具有较高的吸氢酶活性,在固氮反应系统中加入5%的H_2,能提高根瘤固氮活性。  相似文献   

4.
水培大豆和田间生长的大豆,接种根瘤菌 Rhizobium B16-11C 后植株全氮含量、叶片叶绿素含量和净光合速率及种子产量都明显增加。比较 Clark 大豆的结瘤品系和不结瘤品系获类似结果。摘除根瘤后3天内叶片净光合速率无明显变化。大豆植株遮阴、去叶或切掉地上部导致根瘤活性明显下降。但去豆荚不能提高根瘤固氮的比活性。根瘤活性的日变化不能用根瘤蔗糖、淀粉含量或周围温度的变化来解释,其控制因子尚待深入研究。  相似文献   

5.
豆科树种回接根瘤菌的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 作者对八种豆科树种的根瘤菌回接进行了研究,不回接根瘤菌的对照植株不结瘤或有少且小的根瘤,而接菌植株的根瘤数量多且个体大;接菌植株的株高、干重及总氮量分别比不接菌的对照植株高出0.7~3.2、1.3~15.8和11.3~14.8倍。根瘤固定的氮量占幼苗生长所需氮的一半以上,固定的氮绝大部分运输到植株其它部位,分配到地上部分的氮素多于根部。固氮量与幼苗生物量显著相关。固氮作用增加了植物对磷、钾元素的吸收和积累。速生树种南洋楹(Albizia falcata)和非速生树种格木(Erythrophloeum fordii)幼苗的结瘤、固氮及生长状况较好,表现出较高的结瘤固氮潜能。  相似文献   

6.
生态条件对马占相思结瘤固氮的影响   总被引:17,自引:3,他引:14  
本文研究了马占相思(Acaciamangium)结瘤固氮和生态条件的关系.结果显示.马占相思根瘤固氮活性的昼夜变化与固氮能源的供给有关,它受光、温影响较大,固氮活性昼夜变化的范围为1—5μmolC2H4·g-1freshnoduleh-1。固氮活性的季节性差异也很明显,且与温、湿度的变化关系密切,在温、湿度较好的5月—10月.固氮活性较高.为3—10μmolC2H4·g-1freshnoduleh-1.冬春的干旱和低温会影响根瘤的生长和存活.造成固氮活性降低甚至失去活性.不同年份和林地的根瘤生物量为104—625kg·ha-1,以幼林期根瘤生物量较高.多数样地的根瘤生物量在300hg·ha-1以上.随着森林生态系统的发展.根系往土层深处生长以及林下草本和灌木层的增长等原因,根瘤生物量会受影响而有所下降。施肥松土能提高根瘤生物量57—344kg·ha-1,对增加固氮量有重大意义。  相似文献   

7.
采用砂培方法,以转OsPT6基因的菜用大豆(T3株系)与其非转基因(NT)受体品种为实验材料,研究了两者在低磷条件下的生长发育指标,植株有效磷、全磷、全氮、豆血红蛋白和籽粒蛋白质含量以及谷氨酰胺合成酶活性的差异,并对植株结瘤及固氮相关基因表达进行检测,为阐明转OsPT6基因菜用大豆在低磷条件下结瘤及固氮相关机理提供理论依据。结果显示:(1)转基因植株的株高、茎粗、花数和荚数、根瘤数均显著高于NT植株。(2)转基因植株根、茎、叶及根瘤中有效磷,全株总磷、总氮含量,根瘤中的豆血红蛋白含量、功能叶片中谷氨酰胺合成酶的活性和籽粒蛋白质含量均显著高于NT植株。(3)相关性分析表明,豆血红蛋白含量、谷氨酰胺合成酶活性、总磷、总氮含量4个指标间均呈显著正相关关系。(4)GmENOD40a、GmENOD40b、GmGS1β1、GmGS1β2基因在转基因植株中的表达量显著高于NT植株。研究表明,OsPT6基因过表达增强了菜用大豆在低磷条件下的结瘤及固氮能力,该研究结果为进一步研究其调控机理奠定了基础。  相似文献   

8.
钨和铬处理的大豆植株干物质重及全氮含量显著增高,接近钼处理组或稍低,而根瘤固氮酶活性和硝酸还原酶活性比钼处理组低,但结瘤量则较高。  相似文献   

9.
从新疆不同生态条件下生长的31属109种豆科植物根瘤分离获得373株根瘤菌,其中88株是从未报道过结瘤情况的39种豆科植物根瘤分离获得。它们与豆科寄主植物共生结瘤,95%以上为有效根瘤。不同种的根瘤固氮活性差异较大,黄芪属根瘤固氮活性较高,最高者为大豆根瘤固氮活性的42倍。 20属37种豆科植物根瘤中97%有吸氢活性。根瘤固氮活性、吸氢活性均与寄主植物生长发育期有相关性。  相似文献   

10.
磁场对大豆共生固氮的效应   总被引:1,自引:0,他引:1  
恒定磁场处理慢生大豆根瘤菌“005”和接种后的大豆植株,发现磁场可以提高根瘤的固氮活性。在一定的磁场强度(70—100mT)下,固氮活性平均可以提高4—5倍,植株的结瘤数和根瘤重量平均提高2—3倍。从这样的根瘤中所分离出的根瘤菌,由慢生型转变成快生型,在100植株中有17株的根瘤分离出快生菌。生长世代时间和培养溶液中的pH值与慢生型不同,而与快生型相同。  相似文献   

11.
12.
Symbiotic dinoflagellates of the genus Symbiodinium and residing in the tropical hydroid Myrionema amboinense acclimate to low photon flux associated with low light 'shade' environments by increasing the amount of photosynthetic pigments per algal cell. The photosynthetic light intensity (PI) curves suggested that the low-light pigment response involved an increase in the number of photosynthetic units (PSU) in the chloroplast in addition to any increases in PSU size. Comparisons of light-dependent portion of the P-I curves of freshly isolated zooxanthellae (FIZ) with those from symbionts within the intact animal suggest that the host cell environment reduced average light levels reaching the symbiotic algae by more than half. This phenomenon may protect the algae from photobleaching of pigments and/or photoinhibition of photosynthesis at high light intensities present in shallow water habitats. In addition, maximum photosynthesis (P(max)) of symbionts removed from the host cell was higher than that recorded from dinoflagellates in the intact association, suggesting that the availability of carbon dioxide for photosynthesis may be limited in the intact hydroid. Shaded polyps contained fewer zooxanthellae and had less tissue biomass (measured as protein) than unshaded polyps. However symbionts from shaded polyps acclimated to the low light intensities by increasing chlorophyll levels and photosynthetic rates. The higher photosynthetic rates may have resulted from increased availability of carbon dioxide associated with lower symbiont density. Calculations of the contribution of zooxanthellae carbon to the host animal's respiratory demand (CZAR) showed that zooxanthellae from shaded polyps living in the field potentially provide about the same amount of carbon to their host as zooxanthellae from polyps living in the field in unshaded high light intensities.  相似文献   

13.
In a greenhouse pot oulture experiment, a dinitrogen (N2) fixing — acetylene reduction activity profile was examined in detail as affected by plant age. Total [μmol C2H4 root-1 h-1] and speoifio nitrogenase [nmol C2H4 (mg nodule d. wt.)-1 min-1] activities peaked 63 days after sowing, near the end of flowering. The nitrogenase activities, nodule dry matter accumulation, top dry matter accumulation, and total nitrogen yield in the top dry matter were found to be highly correlated.  相似文献   

14.
秸秆还田对棉花生长的化感效应   总被引:15,自引:4,他引:11  
研究了秸秆不同还田量及不同腐解时间对后茬棉花抗氧化物酶活性和光合生理特性的影响.结果表明,棉花秸秆腐解产物,在一定程度上抑制了棉花种子的萌发,延长了种子出苗时间,影响棉花植株生长.随着秸秆腐解时间延长和秸秆还田数量增加,棉花单叶净光合速率、气孔导度、蒸腾速率和胞间CO2浓度降低.当加入秸秆量为10 g·kg-1时,净光合速率略高于对照,随着秸秆还田量的增加,又呈现下降趋势,表现出一定"浓度效应",其中加入秸秆量为90 g·kg-1时,净光合速率下降最明显,腐解30d和60d净光合速率分别比对照减少了26.8%和43.4%;随着秸秆还田量的增多和秸秆腐解时间延长,POD活性增加,SOD活性和根系活力呈现下降趋势,叶片MDA含量却升高.表明棉花秸秆还田后分解产生的化学物质具有一定的自毒效应,对连作棉花种子萌发、抗氧化物酶活性和光合生理造成影响.  相似文献   

15.
Mature non-senescent leaves of evergreen species become gradually shaded as new foliage develops and canopy expands, but the interactive effects of integrated light during leaf formation (Q(int)G), current light (Q(int)C) and leaf age on foliage photosynthetic competence are poorly understood. In Quercus ilex L., we measured the responses of leaf structural and physiological variables to Q(int)C and Q(int)G for four leaf age classes. Leaf aging resulted in increases in leaf dry mass per unit area (M(A)), and leaf dry to fresh mass ratio (D(F)) and decreases in N content per dry mass (N(M)). N content per area (N(A)) was independent of age, indicating that decreases in N(M) reflected dilution of leaf N because of accumulation of dry mass (NA = N(M) M(A)). M(A), D(F) and N(A) scaled positively with irradiance, whereas these age-specific correlations were stronger with leaf growth light than with current leaf light. Area-based maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity (V(cmax)A), capacity for photosynthetic electron transport (J(max)A) and the rate of non-photorespiratory respiration in light (R(d)A) were also positively associated with irradiance. Differently from leaf structural characteristics, for all data pooled, these relationships were stronger with current light with little differences among leaves of different age. Acclimation to current leaf light environment was achieved by light-dependent partitioning of N in rate-limiting proteins. Mass-based physiological activities decreased with increasing leaf age, reflecting dilution of leaf N and a larger fraction of non-photosynthetic N in older leaves. This resulted in age-dependent modification of leaf photosynthetic potentials versus N relationships. Internal diffusion conductance (g(m)) per unit area (g(m)A) increased curvilinearly with increasing irradiance for two youngest leaf age classes and was independent of light for older leaves. In contrast, g(m) per dry mass (g(m)M) was negatively associated with light in current-year leaves. Greater photosynthetic potentials and moderate changes in diffusion conductance resulted in greater internal diffusion limitations of photosynthesis in higher light. Both area- and mass-based g(m) decreased with increasing leaf age. The decrease in diffusion conductance was larger than changes in photosynthetic potentials, leading to larger CO2 drawdown from leaf internal air space to chloroplasts (delta(c)) in older leaves. The increases in diffusion limitations in older leaves and at higher light scaled with age- and light-dependent increases in MA and D(F). Overall, our study demonstrates a large potential of foliage photosynthetic acclimation to changes in leaf light environment, but also highlights enhanced structural diffusion limitations in older leaves that result from leaf structural acclimation to previous rather than to current light environment and accumulation of structural compounds with leaf age.  相似文献   

16.
To copy with highly heterogeneous light environment, plants can regulate photosynthesis locally and systemically, thus, maximizing the photosynthesis of individual plants. Therefore, we speculated that local weak light may induce the improvement of photosynthesis in adjacent illuminated leaves in plants. In order to test this hypothesis, maize seedlings were partially shaded, and gas exchange, chlorophyll a fluorescence and biochemical analysis were carefully assessed. It was shown that local shading exacerbated the declines in the photosynthetic rates, chlorophyll contents, electron transport and carbon assimilation‐related enzyme activities in shaded leaves as plants growth progressed. While, the decreases of these parameters in adjacent illuminated leaves of shaded plants were considerably alleviated compared to the corresponding leaves of control plants. Obviously, the photosynthesis in adjacent illuminated leaves in shaded plants was improved by local shading, and the improvement in adjacent lower leaves was larger than that in adjacent upper ones. As growth progressed, local shading induced higher abscisic acid contents in shaded leaves, but it alleviated the increase in the abscisic acid contents in adjacent leaves in shaded plants. Moreover, the difference in sugar content between shaded leaves and adjacent illuminated ones was gradually increased. Consequently, local weak light suppressed the photosynthesis in shaded leaves, while it markedly improved the photosynthesis of adjacent illuminated ones. Sugar gradient between shaded leaves and adjacent illuminated ones might play a key role in photosynthetic regulation of adjacent illuminated leaves.  相似文献   

17.
Abstract: The C3/CAM intermediate species, C/usia parviflora Saldanha et EngI., and the obligate CAM species Clusia hilariana Schlecht., occur sympatrically in the coastal sand dune vegetation of the Restinga of Brazil. Their photosynthetic activity at an exposed and at a shaded site was compared by measuring gas exchange (porometry), chlorophyll a fluorescence parameters, organic acid levels (malic and citric) and carbon isotope ratios. At the shaded site, low photosynthetic photon flux densities (PPFD) strongly restricted photosynthetic activity. However, C parviflora could readily make use of light flecks. At the exposed site, C. parviflora was much less affected by photoinhibition than C. hilariana . The CAM species showed higher apparent rates of linear photosynthetic electron transport (ETR) and higher effective quantum yield of PSII (ΔF/F'm) than did C. parviflora during high insolation in the middle of the day, i.e., the time of Phase Ill of CAM. Nevertheless, it suffered much more severe acute photoinhibition that was not reversible after 20 min of darkening during this time, and even some chronic photoinhibition not reversible overnight. Comparative studies of sympatric physiotypes with different modes of photosynthesis of a given leaf morphotype, as available in the genus Cksia , challenge some CAM dogmas, e.g., CAM may not always be superior at exposed sites and may not always provide better photoprotection at high PPFD. However, the idea that C3/CAM plasticity allows occupation of a wider range of habitats is supported.  相似文献   

18.
Intraspecific variations in the reproduction of individual ramets and monospecific patches of the understory herb Arnica cordifolia Hook. were compared with variations in photosynthesis and understory light conditions. Ramets and patches were compared from three microhabitats (open, intermediate, and shaded) that differed in daily integrated irradiance. Individual ramets from open microhabitats (> 12 MJ m−2 d−1) had 23% more total dry wt and produced twice as many seeds, when compared to ramets from shaded locations (< 5 MJ m−2 d−1). In addition, monospecific patches from open locations were 63% more dense, and estimates of seed and vegetative patch reproductive effort were 4 and 2 times greater, respectively, when compared to shaded plant patches. For all measurements, ramets and patches from intermediate understory locations (6–10 MJ m−2 d−1) were intermediate in reproductive capacity between those of open and shaded locations. In addition, A. cordifolia seeds from open microhabitats germinated significantly better (45%) than either intermediate or shaded location seeds under high light and only seeds from shaded microhabitats germinated (14%) in the dark. Compared to shaded location plants, the greater total dry weight and seed production of individual ramets and the greater estimated reproductive effort of patches from open locations corresponded to a greater maximum photosynthetic rate (16.9 μmoles m−2 s−1) and daily carbon gain (12.2 g m−2 d−1). Possibly, a greater photosynthetic capacity may make more photosynthetic resources available for reproduction by A. cordifolia plants in open locations. Thus, intraspecific variation in physiology may contribute to intraspecific variation in reproduction.  相似文献   

19.
Summary Seeds of Gliricidia sepium (Jacq.) Walp., a tree native to seasonal tropical forests of Central America, were inoculated with N-fixing Rhizobium bacteria and grown in growth chambers for 71 days to investigate interactive effects of atmospheric CO2 and plant N status on early seedling growth, nodulation, and N accretion. Seedlings were grown with CO2 partial pressures of 350 and 650 bar (current ambient and a predicted partial pressure of the mid-21st century) and with plus N or minus N nutrient solutions to control soil N status. Of particular interest was seedling response to CO2 when grown without available soil N, a condition in which seedlings initially experienced severe N deficiency because bacterial N-fixation was the sole source of N. Biomass of leaves, stems, and roots increased significantly with CO2 enrichment (by 32%, 15% and 26%, respectively) provided seedlings were supplied with N fertilizer. Leaf biomass of N-deficient seedlings was increased 50% by CO2 enrichment but there was little indication that photosynthate translocation from leaves to roots or that plant N (fixed by Rhizobium) was altered by elevated CO2. In seedlings supplied with soil N, elevated CO2 increased average nodule weight, total nodule weight per plant, and the amount of leaf nitrogen provided by N-fixation (as indicated by leaf 15N). While CO2 enrichment reduced the N concentration of some plant tissues, whole plant N accretion increased. Results support the contention that increasing atmospheric CO2 partial pressures will enhance productivity and N-fixing activity of N-fixing tree seedlings, but that the magnitude of early seedling response to CO2 will depend greatly on plant and soil nutrient status.  相似文献   

20.
苗期遮光光质对生姜光合及生长的影响   总被引:5,自引:0,他引:5  
以不同颜色塑料薄膜为遮光材料,研究了苗期遮光光质对生姜生长及光合作用的影响.结果表明:幼苗覆膜期,生姜叶片叶绿素含量以蓝膜及绿膜处理较高,白膜次之,红膜较低;叶片Pn则以绿膜处理较高,为14.9 μmol·m-2·s-1(第4叶),分别较白膜、红膜及蓝膜提高5.7%、10.4%和18.3%.旺盛生长期撤膜后,Pn较幼苗期升高,但处理间的变化趋势与幼苗期相似;新生叶片叶绿素含量除红膜处理较低外,其它处理无显著差异,但下位叶片叶绿素含量则以蓝膜和红膜处理显著低于绿膜和白膜处理.蓝膜处理生姜植株茎秆增高、变细,分枝数较少;绿膜处理植株根、茎、叶及根茎鲜质量较高,白膜、红膜及蓝膜处理依次降低,收获时,其产量分别达57 000、53 709、51 487和48 712 kg·hm-2.说明生姜苗期采用绿膜遮光,可增强叶片光合作用,促进植株生长,提高生姜产量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号