首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
mTORC2是细胞内促进细胞存活、介导肌动蛋白骨架重组的重要复合物。Akt是mTORC2的下游重要效应蛋白,它的持续激活是细胞癌变的重要因素之一。在今年三月份cell上的一篇文章中阐明了mTORC2的上游信号,从而使人们在以mTORC2为靶点的肿瘤治疗之路上又向前迈出了一步。  相似文献   

2.
3.
近几年来,关于哺乳动物雷帕霉素靶(mammalian target of rapamycin,mTOR)在各种哺乳动物细胞中调节肌动蛋白微丝极化及肌球蛋白微丝网形成的研究一直在不断地取得新的进展。尽管到目前为止,包括mTORC2上游和下游在内的相关的调控路径还未明确,但是因为mTORC6,的物学多样性,使其成为了当今生物学研究的焦点之一。基于长久以来特别是近五年对mTORC2的研究,在涉及细胞运动迁移、增殖分化、蛋白质合成、凋亡及自噬等生物学功能的研究中,一些重要的下游相关调控分子和蛋白相继被发现,比如P—Rexl/2、Rho家族GTPases、PKC、cAMP、p27kip1等。该综述着重总结了mTORC2实现这些生物学功能所可能通过的四条路径。当然,仍然需要大量的实验数据和研究证据进一步地证实和完善这些已经发现的可能存在的路径。  相似文献   

4.
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.  相似文献   

5.
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.  相似文献   

6.
正亮氨酸是重要的蛋白质合成原料,同时也可作为信号分子参与调节包括饱感、胰岛素分泌、骨骼肌合成代谢等多种生理活动。mT OR复合物1(mT OR complex 1,mT ORC1)蛋白激酶是调节亮氨酸功能的关键调控分子,通过控制蛋白质、脂质合成、自噬等过程调控细胞发育。然而,mT ORC1上游的亮氨酸相关信号通路尚不清楚。近期来自麻省理工学院的David M.Sabatini实验室在《科学》杂志上报道了最新研究:Sestrin2在mT ORC1信号通路中发  相似文献   

7.
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.  相似文献   

8.
Chemotaxis is a process by which cells polarize and move up a chemical gradient through the spatiotemporal regulation of actin assembly and actomyosin contractility, which ultimately control front protrusions and back retractions. We previously demonstrated that in neutrophils, mammalian target of rapamycin complex 2 (mTORC2) is required for chemoattractant-mediated activation of adenylyl cyclase 9 (AC9), which converts ATP into cAMP and regulates back contraction through MyoII phosphorylation. Here we study the mechanism by which mTORC2 regulates neutrophil chemotaxis and AC9 activity. We show that inhibition of protein kinase CβII (PKCβII) by CPG53353 or short hairpin RNA knockdown severely inhibits chemoattractant-induced cAMP synthesis and chemotaxis in neutrophils. Remarkably, PKCβII-inhibited cells exhibit specific and severe tail retraction defects. In response to chemoattractant stimulation, phosphorylated PKCβII, but not PKCα, is transiently translocated to the plasma membrane, where it phosphorylates and activates AC9. mTORC2-mediated PKCβII phosphorylation on its turn motif, but not its hydrophobic motif, is required for membrane translocation of PKCβII. Inhibition of mTORC2 activity by Rictor knockdown not only dramatically decreases PKCβII activity, but it also strongly inhibits membrane translocation of PKCβII. Together our findings show that PKCβII is specifically required for mTORC2-dependent AC9 activation and back retraction during neutrophil chemotaxis.  相似文献   

9.
The hostile tumor microenvironment results in the generation of intracellular stresses including hypoxia and nutrient deprivation. In order to adapt to such conditions, the cell utilizes several stress-response mechanisms, including the attenuation of protein synthesis, the inhibition of cellular proliferation, and induction of autophagy. Autophagy leads to the degradation of cellular contents, including damaged organelles and mutant proteins, which the cell can then use as an alternate energy source. Two integral changes to the signaling milieu to promote such a response include inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of eIF2α. This review will describe how conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2α, the downstream impact of these modifications, and the implications in tumorigenesis. We will then discuss the remarkable similarities and overlapping function of these 2 signaling pathways, focusing on the response to amino acid deprivation, and present a new model involving crosstalk between them based on our recent work.  相似文献   

10.
Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates AGC protein kinases including protein kinase C (PKC) and regulates cellular functions such as cell migration. However, its regulation remains poorly understood. Here we show that lysophosphatidic acid (LPA) induces two phases of PKC-δ hydrophobic motif phosphorylation. The late phase is mediated by Gα(12), which specifically activates ARAF, leading to upregulation of the RFFL E3 ubiquitin ligase and subsequent ubiquitylation and degradation of the PRR5L subunit of mTORC2. Destabilization of PRR5L, a suppressor of mTORC2-mediated hydrophobic motif phosphorylation of PKC-δ, but not AKT, results in PKC-δ hydrophobic motif phosphorylation and activation. This Gα(12)-mediated signalling pathway for mTORC2 regulation is critically important for fibroblast migration and pulmonary fibrosis development.  相似文献   

11.
Adult tissue maintenance is often dependent on resident stem cells; however, the phenotypic and functional heterogeneity existing within this self-renewing population is poorly understood. Here, we define distinct subsets of undifferentiated spermatogonia (spermatogonial progenitor cells; SPCs) by differential response to hyperactivation of mTORC1, a key growth-promoting pathway. We find that conditional deletion of the mTORC1 inhibitor Tsc2 throughout the SPC pool using Vasa-Cre promotes differentiation at the expense of self-renewal and leads to germline degeneration. Surprisingly, Tsc2 ablation within a subset of SPCs using Stra8-Cre did not compromise SPC function. SPC activity also appeared unaffected by Amh-Cre-mediated Tsc2 deletion within somatic cells of the niche. Importantly, we find that differentiation-prone SPCs have elevated mTORC1 activity when compared to SPCs with high self-renewal potential. Moreover, SPCs insensitive to Tsc2 deletion are preferentially associated with mTORC1-active committed progenitor fractions. We therefore delineate SPC subsets based on differential mTORC1 activity and correlated sensitivity to Tsc2 deletion. We propose that mTORC1 is a key regulator of SPC fate and defines phenotypically distinct SPC subpopulations with varying propensities for self-renewal and differentiation.  相似文献   

12.
Pancreatic β-cell apoptosis is a key feature of diabetes and can be induced by chronic exposure to saturated fatty acids (FAs). However, the underlying mechanisms remain poorly understood. We presently evaluated the role of Mcl-1 and mTOR in mice fed with high-fat-diet (HFD) and β-cells exposed to the overloaded palmitic acid (PA). Compared with normal-chow-diet (NCD)-fed mice, HFD group showed impaired glucose tolerance after two months. Along with the diabetes progression, pancreatic islets first became hypertrophic and then atrophic, the ratio of β-cell:α-cell increased in the islets of four months HFD-fed mice while decreased after six months. This process was accompanied by significantly increased β-cell apoptosis and AMPK activity, and decreased Mcl-1 expression and mTOR activity. Consistently, glucose-induced insulin secretion dropped. In terms of mechanism, PA with lipotoxic dose could activate AMPK, which in turn inhibited ERK-stimulated Mcl-1Thr163 phosphorylation. Meanwhile, AMPK blocked Akt activity to release Akt inhibition on GSK3β, followed by GSK3β-initiated Mcl-1Ser159 phosphorylation. The context of Mcl-1 phosphorylation finally led to its degradation by ubiquitination. Also, AMPK inhibited the activity of mTORC1, resulting in a lower level of Mcl-1. Suppression of mTORC1 activity and Mcl-1 expression positively related to β-cell failure. Alteration of Mcl-1 or mTOR expression rendered different tolerance of β-cell to different dose of PA. In conclusion, lipid oversupply-induced dual modulation of mTORC1 and Mcl-1 finally led to β-cell apoptosis and impaired insulin secretion. The study may help further understand the pathogenesis of β-cell dysfunction in case of dyslipidemia, and provide promising therapeutic targets for diabetes.  相似文献   

13.
Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”.  相似文献   

14.
目的:研究隐丹参酮对Akt活性的影响及其在抑制HepG2细胞生长中的作用。方法:Western印迹检测隐丹参酮对Akt磷酸化的影响;CCK-8法检测隐丹参酮与MK2206或PP242联合用药对HepG2的生长抑制作用。结果:Western印迹证明隐丹参酮处理能够增强HepG2细胞Akt的磷酸化,同时发现隐丹参酮对Akt的增强作用依赖于mTORC2的活性;通过MK2206或PP242抑制Akt的反馈激活,能够明显促进隐丹参酮对HepG2细胞的生长抑制作用。结论:通过抑制Akt的反馈激活能够增强隐丹参酮的抗肿瘤作用,为隐丹参酮肿瘤治疗的临床应用联合用药提供了理论基础。  相似文献   

15.
16.
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide.HCC is refractory to many standard cancer treatments and the prognosis is often poor,highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments.Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors.Nevertheless,the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated.In this study,we found that KIF2C expression was significantly upregulated in HCC,and that KIF2C up-regulation was associated with a poor prognosis.Utilizing both gain and loss of function assays,we showed that KIF2C promoted HCC cell proliferation,migration,invasion,and metastasis both in vitro and in vivo.Mechanistically,we identified TBC1D7 as a binding partner of KIF2C,and this interaction disrupts the formation of the TSC com-plex,resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction.Additionally,we found that KIF2C is a direct target of the Wnt/β-catenin pathway,and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling.Thus,the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling,which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.  相似文献   

17.
18.
SAD-A kinase is a member of the AMPK-related family of kinases, which are under the control of LKB1 kinase. In the human kinome, SAD-A is most closely related to AMPK, a key energy sensor and master regulator of metabolism. In contrast to AMPK, little is known about the physiological function of the SAD-A kinase in metabolism. Recent studies using knockout mice have revealed a striking role of the SAD-A kinase in regulating dynamic functions of islet β cells, from glucose-stimulated insulin secretion (GSIS), islet β-cell size and mass, to GLP-1 response as the first tissue-specific effector of mTORC1 signaling. These studies suggest that SAD-A and AMPK kinase may function as the positive and negative regulators of mTORC1 signaling in islet β cells. Importantly, these findings have implicated SAD-A kinase as a novel drug target for the treatment of type 2 diabetes.  相似文献   

19.
20.
正哺乳动物雷帕霉素靶蛋白(mTOR)是存在于哺乳动物体内的一种高度保守的丝氨酸/苏氨酸蛋白激酶,能够调节细胞内多种物质的代谢。它参与组成哺乳动物雷帕霉素靶蛋白复合体1(mTORC1)和哺乳动物雷帕霉素靶蛋白复合体2(mTORC2)2种复合体。在2015年发现的人类mT ORC1结构基础上,Saxton等人揭示了亮氨酸对于mT ORC1通路复杂的调控机制。他  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号