首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A novel influenza A (2009 H1N1) virus has led to a worldwide pandemic. A significant number of patients with pneumonia have been reported, although its pathogenesis remains to be elucidated. To determine its pathogenesis, we evaluated serum interleukin (IL)-5 and peripheral eosinophil counts in patients with acute pneumonia caused by the 2009 H1N1 virus. During the period from October to December 2009, 40 patients with laboratory-confirmed 2009 H1N1 pneumonia were under investigation. Their mean age at presentation was 6.8 years. The most characteristic finding was the early development of hypoxemic respiratory distress in the first 24 hr after the onset of fever. Bronchial mucous plugs included eosinophils in addition to neutrophils, even in patients without allergies. Serum IL-5 levels were elevated in 20 out of 24 patients (83%) whose samples were obtained in the first 24 hr after the onset of fever (26.5 ± 20.1 pg/mL), independent of the presence of underlying allergies. In contrast, induction of IL-5 was not documented in sera from eight patients with laboratory-confirmed 2009 H1N1 virus who developed neurological complications, but without lower respiratory infection (2.1 ± 0.7 pg/mL, P < 0.001 vs acute pneumonia). Peripheral eosinophilia was characteristic in acute pneumonia, but not in patients without a lower respiratory infection. There was a marked difference in the induction of IL-5 in 2009 H1N1 patients who developed acute pneumonia, compared with those without a lower respiratory infection. IL-5 may play a role in the early phase of acute pneumonia caused by the 2009 H1N1 virus in Japanese children.  相似文献   

3.
4.
5.
建立新甲型H1N1流感病毒小鼠致死模型,为研究致病性、宿主适应性以及疫苗保护性提供动物模型,并寻找病毒在适应宿主过程中影响毒力和适应性的关键位点。将新甲型H1N1流感病毒A/四川/SWL1/2009 H1N1在小鼠中连续传15代,各代次毒株均在MDCK细胞上增殖后进行测序,根据序列分析结果选择6个传代毒株感染小鼠,连续监测14 d体重和死亡情况;并对第14代和15代病毒在噬斑实验纯化后克隆和测序分析。原代病毒不致死BABL/C小鼠,经动物体内连续传代适应宿主动物后,其毒力增强,具体表现为所选的6个传代毒株中第7、11、15代毒株可以100%致死试验小鼠;分析这6个传代毒株的全基因组表明这些毒株的部分氨基酸位点发生突变。新甲型H1N1流感病毒经小鼠体内连续传代后,建立了小鼠致死模型,病毒毒力增强可能与某些氨基酸位点的改变有关。  相似文献   

6.
The last decade has seen the emergence of two new influenza A subtypes and they have become a cause of concern for the global community. These are the highly pathogenic H5N1 influenza A virus (H5N1) and the Pandemic 2009 influenza H1N1 virus. Since 2003 the H5N1 virus has caused widespread disease and death in poultry, mainly in south East Asia and Africa. In humans the number of cases infected with this virus is few but the mortality has been about 60%. Most patients have presented with severe pneumonia and acute respiratory distress syndrome. The second influenza virus, the pandemic H1N1 2009, emerged in Mexico in March this year. This virus acquired the ability for sustained human to human spread and within a few months spread throughout the world and infected over 4 lakh individuals. The symptoms of infection with this virus are similar to seasonal influenza but it currently affecting younger individuals more often. Fortunately the mortality has been low. Both these new influenza viruses are currently circulating and have different clinical and epidemiological characteristics.  相似文献   

7.

Background

The 2009 A(H1N1) influenza virus has caused a large outbreak, and resulted in major complications of severe pneumonia and acute encephalopathy in the pediatric population in Japan.

Methods

This study examined six patients with acute encephalopathy, 34 patients with severe pneumonia, five patients with both pneumonia and encephalopathy, and 46 patients without severe complications. The concentrations of 27 cytokines were examined in the cerebrospinal fluid of patients with encephalopathy, and the levels of these cytokines, Cytochrome c, high-mobility group box 1 (HMGB1) were measured in the serum of all patients.

Results

Patients with severe pneumonia had higher serum concentrations of 16 cytokines, including Th1 cytokines, Th2 cytokines, chemokines, and growth factors, than patients with uncomplicated influenza. The distribution of 27 cytokines in the CSF did not parallel the serum levels in 11 patients with acute encephalopathy. HMGB1 concentrations in the serum were significantly higher in pneumonia patients with or without encephalopathy than in uncomplicated influenza patients, and were significantly associated with the upregulation of 10 cytokines.

Conclusions

Elevated levels of Th2 cytokines appear to be unique to influenza caused by 2009 H1N1 influenza virus and HMGB1 could play an important role in the pathogenesis of severe pneumonia. There appear to be different pathologic processes for encephalopathy and pneumonia.  相似文献   

8.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

9.
自2009年3月,甲型H1N1流感疫情相继在包括我国在内的许多国家暴发,对人体健康和社会经济发展造成了严重危害。血凝素(HA)蛋白是重要的病毒表面糖蛋白,主要有3种功能:①与宿主细胞表面受体结合;②引起病毒包膜与靶细胞间的膜融合;③刺激机体产生中和性抗体。本文综合了近年来的研究成果,对甲型H1N1流感病毒HA蛋白结构、主要功能、进化、抗原性的研究进展进行了综述。  相似文献   

10.

Background

A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1) has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood.

Methodology/Principal Finding

In this study, we showed that a 2009 A (H1N1) influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1) influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms.

Conclusion/Significance

Our understanding of the pathogenesis of the 2009 A (H1N1) influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe.  相似文献   

11.
Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia. Due to their host-range diversity, genetic and antigenic diversity, and potential to reassort genetically in vivo, influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans. Thus, newly emerging viral diseases are always major threats to public health. In March 2009, a novel influenza virus suddenly emerged and caused a worldwide pandemic. The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses; it was identified to have originated from pigs, and further genetic analysis revealed it as a subtype of A/H1N1, thus later called a swine-origin influenza virus A/H1N1. Since the novel virus emerged, epidemiological surveys and research on experimental animal models have been conducted, and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated. In this editorial, we summarize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.  相似文献   

12.

Background

From the first case reports of pandemic influenza (H1N1) 2009 it was clear that a significant proportion of infected individuals suffered a primary viral pneumonia. The objective of this study was twofold; to assess the utility of the CURB-65 community acquired pneumonia (CAP) severity index in predicting pneumonia severity and ICU admission, and to assess the relative sensitivity of nasopharyngeal versus lower respiratory tract sampling for the detection of pandemic influenza (H1N1) CAP.

Methods

A retrospective cohort study of 70 patients hospitalised for pandemic influenza (H1N1) 2009 in an adult tertiary referral hospital. Characteristics evaluated included age, pregnancy status, sex, respiratory signs and symptoms, smoking and alcohol history, CURB-65 score, co-morbidities, disabling sequelae, length of stay and in-hospital mortality outcomes. Laboratory features evaluated included lymphocyte count, C-reactive protein (CRP), nasopharyngeal and lower respiratory tract pandemic influenza (H1N1) 2009 PCR results.

Results

Patients with pandemic (H1N1) 2009 influenza CAP differed significantly from those without pneumonia regarding length of stay, need for ICU admission, CRP and the likelihood of disabling sequelae. The CURB-65 score did not predict CAP severity or the need for ICU admission (only 2/11 patients admitted to ICU had CURB-65 scores of 2 or 3). Nasopharyngeal specimens for PCR were only 62.9% sensitive in CAP patients compared to 97.8% sensitivity for lower respiratory tract specimens.

Conclusions

The CURB-65 score does not predict severe pandemic influenza (H1N1) 2009 CAP or need for ICU admission. Lower respiratory tract specimens should be collected when pandemic (H1N1) 2009 influenza CAP is suspected.  相似文献   

13.

Background

The burden of the pandemic (H1N1) 2009 influenza might be underestimated if detection of the virus is mandated to diagnose infection. Using an alternate approach, we propose that a much higher pandemic burden was experienced in our institution.

Methodology/Principal Findings

Consecutive patients (n = 2588) presenting to our hospital with influenza like illness (ILI) or severe acute respiratory infection (SARI) during a 1-year period (May 2009–April 2010) were prospectively recruited and tested for influenza A by real-time RT-PCR. Analysis of weekly trends showed an 11-fold increase in patients presenting with ILI/SARI during the peak pandemic period when compared with the pre-pandemic period and a significant (P<0.001) increase in SARI admissions during the pandemic period (30±15.9 admissions/week) when compared with pre-pandemic (7±2.5) and post-pandemic periods (5±3.8). However, Influenza A was detected in less than one-third of patients with ILI/SARI [699 (27.0%)]; a majority of these (557/699, 79.7%) were Pandemic (H1N1)2009 virus [A/H1N1/09]. An A/H1N1/09 positive test was correlated with shorter symptom duration prior to presentation (p = 0.03). More ILI cases tested positive for A/H1N1/09 when compared with SARI (27.4% vs. 14.6%, P = 0.037). When the entire study population was considered, A/H1N1/09 positivity was associated with lower risk of hospitalization (p<0.0001) and ICU admission (p = 0.013) suggesting mild self-limiting illness in a majority.

Conclusion/Significance

Analysis of weekly trends of ILI/SARI suggest a higher burden of the pandemic attributable to A/H1N1/09 than estimates assessed by a positive PCR test alone. The study highlights methodological consideration in the estimation of burden of pandemic influenza in developing countries using hospital-based data that may help assess the impact of future outbreaks of respiratory illnesses.  相似文献   

14.
The neuraminidase inhibitor oseltamivir has been identified to have significant anti-influenza activity in clinical practice. However, its efficacy has not been verified in enough subtypes of influenza A virus, particularly, the current pandemic virus, H1N1. In vitro, using our influenza pseudotyped particle system, oseltamivir displayed significant inhibitory effects on viral NA activity and pp release. Conversely, a boosting effect on viral infection was observed, particularly with the 2009 H1N1 pp at oseltamivir concentrations above 0.025 μM. Further testing on two wild 2009 H1N1 virus strains, A/California/07/09 and A/Sichuan/1/09, as well as a seasonal flu virus, A/Baoan/51/2008, confirmed these findings.  相似文献   

15.
The cross‐reactivity of antibody to the swine‐origin pandemic influenza A (H1N1) 2009 virus induced by vaccination with a seasonal trivalent influenza vaccine was studied. Paired sera from a cohort of adult volunteers vaccinated with a trivalent seasonal influenza vaccine every year from 2006 to 2008 were collected each year and tested by hemagglutination inhibition (HI) for antibody against the pandemic influenza A (H1N1) 2009 virus. There was little increase in the geometric mean titer overall; a slight increase was detected in the sera obtained in the 2007–2008 season but not in the other two seasons. The proportion of individuals with HI antibody titers ≥ 1:40 did not change significantly from year to year. These results indicate that cross‐reactivity of the antibodies induced by a trivalent seasonal vaccine to the pandemic influenza A (H1N1) 2009 virus is marginal.  相似文献   

16.
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.  相似文献   

17.
Zhu J  Zou W  Jia G  Zhou H  Hu Y  Peng M  Chen H  Jin M 《Journal of Proteomics》2012,75(6):1732-1741
The H1N1/2009 influenza virus has the potential to cause a human pandemic, and sporadic cases of human-to-pig transmission have been reported. In this study, two influenza viruses were isolated from pigs. A phylogenetic analysis showed that the A/swine/NanChang/F9/2010(H1N1) (F9/10) strain shared a high degree of homology with the pandemic H1N1/2009 virus, and A/swine/GuangDong/34/2006 (H1N1) (34/06) strains was a classical swine influenza virus. A proteomic analysis was performed to investigate possible alterations of protein expression in porcine alveolar macrophage (PAM) cells infected by the F9/10 and 34/06 viruses over different time courses. Using 2-DE in association with MALDI-TOF MS/MS, we identified 13 up-regulated and 21 down-regulated protein spots, including cytoskeleton proteins, cellular signal transduction proteins, molecular biosynthesis proteins and heat shock proteins. The most significant changes in the infected cells were associated with molecular biosynthesis proteins and heat shock proteins. We analysed the biological characteristics of the F9/10 and 34/06 viruses in vivo and in vitro. The F9/10 virus showed greater pathogenicity than the 34/06 virus in PAM cells and mice. This study provides insights into the biologic characteristics, potential virulence alteration and cross-species transmission mechanisms of the pandemic H1N1/2009.  相似文献   

18.
Sun Y  Bian C  Xu K  Hu W  Wang T  Cui J  Wu H  Ling Z  Ji Y  Lin G  Tian L  Zhou Y  Li B  Hu G  Yu N  An W  Pan R  Zhou P  Leng Q  Huang Z  Ma X  Sun B 《PloS one》2010,5(12):e14270

Background

The 2009 swine-origin influenza virus (S-OIV) H1N1 pandemic has caused more than 18,000 deaths worldwide. Vaccines against the 2009 A/H1N1 influenza virus are useful for preventing infection and controlling the pandemic. The kinetics of the immune response following vaccination with the 2009 A/H1N1 influenza vaccine need further investigation.

Methodology/Principal Findings

58 volunteers were vaccinated with a 2009 A/H1N1 pandemic influenza monovalent split-virus vaccine (15 µg, single-dose). The sera were collected before Day 0 (pre-vaccination) and on Days 3, 5, 10, 14, 21, 30, 45 and 60 post vaccination. Specific antibody responses induced by the vaccination were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). After administration of the 2009 A/H1N1 influenza vaccine, specific and protective antibody response with a major subtype of IgG was sufficiently developed as early as Day 10 (seroprotection rate: 93%). This specific antibody response could maintain for at least 60 days without significant reduction. Antibody response induced by the 2009 A/H1N1 influenza vaccine could not render protection against seasonal H1N1 influenza (seroconversion rate: 3% on Day 21). However, volunteers with higher pre-existing seasonal influenza antibody levels (pre-vaccination HI titer ≥1∶40, Group 1) more easily developed a strong antibody protection effect against the 2009 A/H1N1 influenza vaccine as compared with those showing lower pre-existing seasonal influenza antibody levels (pre-vaccination HI titer <1∶40, Group 2). The titer of the specific antibody against the 2009 A/H1N1 influenza was much higher in Group 1 (geometric mean titer: 146 on Day 21) than that in Group 2 (geometric mean titer: 70 on Day 21).

Conclusions/Significance

Recipients could gain sufficient protection as early as 10 days after vaccine administration. The protection could last at least 60 days. Individuals with a stronger pre-existing seasonal influenza antibody response may have a relatively higher potential for developing a stronger humoral immune response after vaccination with the 2009 A/H1N1 pandemic influenza vaccine.  相似文献   

19.
The hemagglutinin genes (HA1 subunit) from human and animal 2009 pandemic H1N1 virus isolates were expressed with a baculovirus vector. Recombinant HA1 (rHA1) protein‐based ELISA was evaluated for detection of specific influenza A(H1N1)pdm09 antibodies in serum samples from vaccinated humans. It was found that rHA1 ELISA consistently differentiated between antibodies recognizing the seasonal influenza H1N1 and pdm09 viruses, with a concordance of 94% as compared to the hemagglutination inhibition test. This study suggests the utility of rHA1 ELISA in serosurveillance.  相似文献   

20.
The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号