首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

4.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine sub-cutaneous fat thickness(SFT) and intramuscular fat(IMF) content.Obese and lean-type pig breeds show obvious differences in adipose deposition;however, the molecular mechanism underlying this phenotypic variation remains unclear.We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages(1―5 months) of Landrace(a leaner, Western breed) and Taihu pigs(a fatty, indigenous, Chinese breed).Variance analysis(ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant(FDR adjusted permutation, P<0.05) among 5 growth stages.Gene class test(GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages(PErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associ-ated with lipid and steroid metabolism.These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes.Clustering analysis revealed a very high level of significance(FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance(FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs.Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs.Based on a dy-namic Bayesian network(DBN) model, gene regulatory networks(GRNs) were reconstructed from time-series data for each pig breed.These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds;from these results, some potential key genes could be identified.Quantitative, real-time RT-PCR(QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages(R=0.874±0.071).These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

5.
6.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine subcutaneous fat thickness (SFT) and intramuscular fat (IMF) content. Obese and lean-type pig breeds show obvious differences in adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unclear. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages (1–5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant (FDR adjusted permutation, P<0.05) among 5 growth stages. Gene class test (GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages (P ErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism. These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes. Clustering analysis revealed a very high level of significance (FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance (FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs. Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds; from these results, some potential key genes could be identified. Quantitative, real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages (R=0.874±0.071). These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

7.
利用Oligo功能分类基因芯片检测了瘦肉型的长白猪和脂肪型的太湖猪在1、2、3、4和5月龄间背部皮下脂肪中脂肪沉积代谢和细胞生长调控相关基因的动态表达变化。差异表达分析结果显示1~5月龄的品种间分别有10、6、11、8和19个基因的表达差异倍数大于2倍, 且长白猪有25个基因在不同月龄间的表达差异达显著水平(P<0.05)。其中血管生成素样蛋白4 (ANGPTL4)、组织蛋白酶K (CTSK) 、异柠檬酸脱氢酶2(NADP+) (IDH2)、脂蛋白脂酶 (LPL)、苹果酸酶1 (ME1)、 硬酯酰辅酶A去饱和酶 (SCD)和解藕联蛋白2 (UCP2)这7个基因不仅在同月龄的品种间和品种内的不同月龄间差异表达, 主成分分析结果也显示其表达模式明显偏离其他基因, 提示受到了特殊的调控。聚类分析结果显示1~5月龄间长白猪中正调控脂肪酸代谢基因的表达量逐渐上调, 太湖猪中参与细胞生长调控基因的表达量平缓波动且变化幅度相对较小。另外, 5个差异表达基因的荧光定量RT-PCR验证结果均与芯片结果呈正相关趋势。结果成功筛选出了对猪胴体和肉质性状可能具有重要影响并值得深入研究的一些候选基因, 初步揭示了相关基因的表达变化规律, 为了解生长发育过程中脂肪酸合成与水解的动态平衡过程提供了基础数据。  相似文献   

8.
利用Oligo功能分类基因芯片检测了瘦肉型的长白猪和脂肪型的太湖猪在1、2、3、4和5月龄间背部皮下脂肪中脂肪沉积代谢和细胞生长调控相关基因的动态表达变化。差异表达分析结果显示1~5月龄的品种间分别有10、6、11、8和19个基因的表达差异倍数大于2倍, 且长白猪有25个基因在不同月龄间的表达差异达显著水平(P<0.05)。其中血管生成素样蛋白4 (ANGPTL4)、组织蛋白酶K (CTSK) 、异柠檬酸脱氢酶2(NADP+) (IDH2)、脂蛋白脂酶 (LPL)、苹果酸酶1 (ME1)、 硬酯酰辅酶A去饱和酶 (SCD)和解藕联蛋白2 (UCP2)这7个基因不仅在同月龄的品种间和品种内的不同月龄间差异表达, 主成分分析结果也显示其表达模式明显偏离其他基因, 提示受到了特殊的调控。聚类分析结果显示1~5月龄间长白猪中正调控脂肪酸代谢基因的表达量逐渐上调, 太湖猪中参与细胞生长调控基因的表达量平缓波动且变化幅度相对较小。另外, 5个差异表达基因的荧光定量RT-PCR验证结果均与芯片结果呈正相关趋势。结果成功筛选出了对猪胴体和肉质性状可能具有重要影响并值得深入研究的一些候选基因, 初步揭示了相关基因的表达变化规律, 为了解生长发育过程中脂肪酸合成与水解的动态平衡过程提供了基础数据。  相似文献   

9.
骨骼肌细胞和脂肪细胞在分化生长速度上相对竞争的平衡点是猪肉质和胴体性状的决定因素.利用Oligo功能分类芯片检测了瘦肉型的长白猪和脂肪型的太湖猪在初生、1、2、3、4和5月龄间背最长肌中肌肉生长和脂肪沉积相关基因的动态表达变化.差异表达分析结果显示,在初生至5月龄的品种间分别有15、16、11、13、18和20个基因的表达差异倍数大于2倍.品种内的方差分析表明,长白猪分别有18和22个基因,太湖猪分别有3和7个基因在月龄间的表达差异达极显著(P<0.01)和显著水平(P<0.05).主成分分析结果显示,先降后升是两品种内最具代表性的基因表达模式,且长白猪和太湖猪分别有7和6个基因的表达模式明显偏离其他基因,提示其可能受到了重要的调控. 此外,5个差异表达基因的荧光定量RT-PCR验证结果均与芯片结果呈正相关趋势.以上结果筛选出了对于猪肉质和胴体性状可能具有重要影响,值得深入研究的一些候选基因,为深入研究生长发育过程中参与肌纤维生长和脂肪酸合成关键基因的表达变化规律和互作调控机制提供了基础数据.  相似文献   

10.
钙蛋白酶抑制蛋白基因是影响猪肉质性状的候选基因之一。本研究以125头地方猪和117头外来猪为材料,研究CAST基因的多态性。结果在CAST基因上检测到一个多态性位点(A876G),并引起了氨基酸残基的改变Lys250 Arg。在地方猪种中仅检测到G (Arg)等位基因,而在外来猪种中A (Lys) 和 G (Arg)两个等位基因均检测到。基因型与肉质性状的关联性分析结果表明,CAST基因型与肌肉的嫩度,屠宰45 min后的pH值及滴水损失存在强相关,又由于地方猪种与外来猪种的肉质性状间存在显著差异。因此,在CAST基因上检测到的多态型位点Lys250Arg的基因型效应有待于进一步研究,并将其有效应用于商品猪生产中。  相似文献   

11.
12.
Yang F  Wang QP  He K  Wang MH  Pan YC 《遗传》2012,34(7):872-878
为了挖掘新的猪肉品质及胴体性状的候选基因,揭示猪肉质及胴体性状的遗传机制,文章将丙酸代谢通路作为候选通路,将通路内基因与猪肉质及胴体性状进行关联分析。实验采用37头三元杂交商品猪作为研究对象,首次针对丙酸通路中7个基因的36个SNP位点利用SNaPshot方法进行基因分型,分别用最小二乘模型及MB-MDR模型与肉质及胴体性状进行关联分析。结果发现,基因PCCB、MUT、MCEE及ACSS2上的4个SNP位点分别与肌内脂肪含量、背膘厚等性状显著相关(P<0.05),ACSS2与猪脂肪含量显著相关;MCEE及MUT与猪的背膘厚显著相关;PCCB基因与脂重显著相关。通过MB-MDR方法检测到多个SNP位点具有互作效应,并与背膘厚、水分含量、脂肪含量显著相关(P<0.05)。另外,丙酸代谢通路中的基因间的互作效应对猪肉品质有显著影响。  相似文献   

13.
14.
15.
There are phenotypic differences between Korean native pig (KNP) and Yorkshire (YS) breeds due to different interests in selection. YS has been selected for industrial interests such as a growth rate and lean meat production, while KNP has been maintained as a regional breed with local interests such as disease resistance and fat content in and between muscle. A comparison of gene expression profiles from liver tissue reflected overall long-term effects of artificial selection for these two pig breeds. Based on minimum positive false discovery rate (less than 10%) and fold change (|FC|>1.5), 73 differentially expressed genes (DEGs) were identified. Functional analysis of these DEGs indicated clear distinctions in signaling capacity related to epidermal growth factor (EGF), extracellular structure, protein metabolism, and detoxification. Hepatic DEGs demonstrated the importance of hormonal and metabolic capabilities to differences between these two pig breeds.  相似文献   

16.
17.
18.
19.
In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P?相似文献   

20.
Recent attention in pig breeding programs has focused on the improvement of pork quality in response to increasing consumer demands. Compared to the fatty-type Northeastern Indigenous (Chinese) breed of pigs, the lean-type Large White has lower intramuscular fat and inferior eating quality from the perspective of the Chinese consumer. In order to investigate the molecular basis of differences in pork quality in Chinese indigenous and Western breeds, longissimus dorsi samples were collected from three adult Northeastern Indigenous and three adult Large White pigs. The RNAs were extracted and hybridized to the porcine Affymetrix GeneChip. Microarray analysis demonstrated differential expression of 1134 genes of which 401 have a known function. One hundred and thirty-six genes were up-regulated and 998 down-regulated in Northeastern Indigenous breed compared to Large White pigs. We screened 10 genes as candidate genes associated with pork quality. We investigated a single nucleotide polymorphism in the 5' regulatory region of the gene FABP4 in 65 Songliao black swine, using PCR-single-strand conformational polymorphism. We found this polymorphism to be highly significantly associated with marbling and intra-muscular fat content (P ≤ 0.01). Genotype BB had higher marbling than AB and AA, but there was no significant difference between AB and AA. Genotype BB and AB had higher intra-muscular fat content than AA, but there was no significant difference between BB and AB. These results help to elucidate the genetic mechanisms behind differences in pork quality and provide a theoretical basis for selection and genetic improvement of meat quality traits in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号