首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11878篇
  免费   742篇
  国内免费   5篇
  2023年   35篇
  2022年   20篇
  2021年   144篇
  2020年   131篇
  2019年   203篇
  2018年   294篇
  2017年   244篇
  2016年   424篇
  2015年   613篇
  2014年   745篇
  2013年   796篇
  2012年   1065篇
  2011年   1042篇
  2010年   648篇
  2009年   498篇
  2008年   786篇
  2007年   674篇
  2006年   611篇
  2005年   558篇
  2004年   570篇
  2003年   452篇
  2002年   360篇
  2001年   354篇
  2000年   327篇
  1999年   226篇
  1998年   88篇
  1997年   72篇
  1996年   46篇
  1995年   48篇
  1994年   38篇
  1993年   29篇
  1992年   83篇
  1991年   54篇
  1990年   44篇
  1989年   48篇
  1988年   27篇
  1987年   28篇
  1986年   21篇
  1985年   23篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   12篇
  1980年   11篇
  1979年   9篇
  1978年   15篇
  1975年   13篇
  1974年   11篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat‐related activities. The heat‐shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species‐induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP‐15. In contrast to Hsp110‐ or Hsp70i‐deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild‐type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild‐type mice that were treated with Celastrol or BGP‐15 following TBI compared to TBI‐treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI.

  相似文献   

2.
3.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   
4.
5.
TRPML3 is a Ca2+ permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca2+ in the fusion process.  相似文献   
6.
Menkes disease (MD) is a copper-deficient neurodegenerative disorder that manifests severe neurologic symptoms such as seizures, lethargic states, and hypotonia. Menkes disease is due to a dysfunction of ATP7A, but the pathophysiology of neurologic manifestation is poorly understood during embryonic development. To understand the pathophysiology of neurologic symptoms, molecular and cellular phenotypes were investigated in Menkes disease-derived induced pluripotent stem cells (MD-iPSCs). MD-iPSCs were generated from fibroblasts of a Menkes disease patient. Abnormal reticular distribution of ATP7A was observed in MD-fibroblasts and MD-iPSCs, respectively. MD-iPSCs showed abnormal morphology in appearance during embryoid body (EB) formation as compared with wild type (WT)-iPSCs. Intriguingly, aberrant switch of E-cadherin (E-cad) to N-cadherin (N-cad) and impaired neural rosette formation were shown in MD-iPSCs during early differentiation. When extracellular copper was chelated in WT-iPSCs by treatment with bathocuprione sulfate, aberrant switch of E-cad to N-cad and impaired neuronal differentiation were observed, like in MD-iPSCs. Our results suggest that neurological defects in Menkes disease patients may be responsible for aberrant cadherin transition and impaired neuronal differentiation during early developmental stage.  相似文献   
7.
Syndecans, a family of transmembrane heparansulfate proteoglycans, are known to interact through their transmembrane domains to form non-covalently linked homodimers, a process essential for their individual functions. Because all syndecan transmembrane domains are highly conserved and thus might mediate interactions between different members of the syndecan family, we investigated syndecan interactions in detail. All recombinant syndecan-2 and -4 protein variants containing the transmembrane domain formed not only sodium dodecyl sulfate (SDS)-resistant homodimers but also SDS-resistant heterodimers. Biochemical and structural data revealed that recombinant syndecan-2 and -4 formed intermolecular interactions in vitro, and the GXXXG motif in transmembrane domain mediated this interaction. When exogenously expressed in rat embryonic fibroblasts, syndecan-2 interacted with syndecan-4 and vice versa. Furthermore, bimolecular fluorescence complementation-based assay demonstrated specific hetero-molecular interactions between syndecan-2 and -4, supporting hetero-oligomer formation of syndecans in vivo. Interestingly, hetero-oligomerization significantly reduced syndecan-4-mediated cellular processes such as protein kinase Cα activation and protein kinase Cα-mediated cell adhesion as well as syndecan-2-mediated tumorigenic activities in colon cancer cells such as migration and anchorage-independent growth. Taken together, these data provide evidence that hetero-oligomerization produces distinct syndecan functions and offer insights into the underlying signaling mechanisms of syndecans.  相似文献   
8.
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.  相似文献   
9.
Recently, we have reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) successfully reduced the production of oxidative stress in streptozotocin-induced diabetic rats and lipopolysaccharide-induced BV-2 microglial cells by increasing their antioxidant capacity. However, antioxidative effects of KHG26693 against Aβ (Aβ)-induced oxidative stress have not yet been reported. In the present study, we further investigated the antioxidative function of KHG26693 in Aβ-mediated primary cultured cortical neurons. We showed here that KHG26693 attenuated Aβ-induced cytotoxicity, increase of Bax/Bcl-2 ratio, elevation of caspase-3 expression, and impairment of mitochondrial membrane potential in cultured primary cortical neurons. KHG26693 also decreases the Aβ-mediated formation of malondialdehyde, reactive oxygen species, and NO production by decreasing nitric oxide synthase (iNOS) and NADPH oxidase level. Moreover, KHG26693 suppress the Aβ-induced oxidative stress through a possible mechanism involving attenuation of GSH and antioxidant enzyme activities such as glutathione reductase and glutathione peroxidase (GPx). Finally, pretreatment of cortical neurons with KHG26693 significantly reduced the Aβ-induced protein oxidation and nitration. To our knowledge, this is the first report, showing that KHG26693 significantly attenuates Aβ-induced oxidative stress in primary cortical neurons, and may prove attractive strategies to reduce Aβ-induced neural cell death.  相似文献   
10.
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor of the immunoglobulin superfamily that has been implicated in multiple neuronal and inflammatory stress processes. In this study, we examined changes in RAGE immunoreactivity and its protein levels in the gerbil hippocampus (CA1-3 regions) after 5 min of transient global cerebral ischemia. The ischemic hippocampus was stained with cresyl violet, neuronal nuclei (a neuron-specific soluble nuclear antigen) antibody and Fluoro-Jade B (a marker for neuronal degeneration). 5 days after ischemia–reperfusion, delayed neuronal death occurred in the stratum pyramidale of the CA1 region. RAGE immunoreactivity was not detected in any regions of the CA1-3 regions of the sham-group; the immunoreactivity was markedly increased only in the CA1 region from 3 days after ischemia–reperfusion. On the other hand, RAGE immunoreactivity was newly expressed in astrocytes, not in microglia. Western blot analysis showed that RAGE protein level was highest at 5 days post-ischemia. In brief, both the RAGE immunoreactivity and protein level were distinctively increased in astrocytes in the ischemic CA1 region from 3 days after transient cerebral ischemia. These results indicate that the increase of RAGE expression in astrocytes after ischemia–reperfusion may be related to the ischemia-caused activation of astrocytes in the ischemic CA1 region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号