首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The identification of genetic mutations responsible for rare familial forms of Parkinson's disease (PD) have provided tremendous insight into the molecular pathogenesis of this disorder. Mutations in the DJ-1 gene cause autosomal recessive early onset PD in two European families. A Dutch kindred displays a large homozygous genomic deletion encompassing exons 1-5 of the DJ-1 gene, whereas an Italian kindred harbors a single homozygous L166P missense mutation. A homozygous M26I missense mutation was also recently reported in an Ashkenazi Jewish patient with early onset PD. Mutations in DJ-1 are predicted to be loss of function. The recent determination of the crystal structure of human DJ-1 demonstrates that it exists in a homo-dimeric form in vitro, whereas the L166P mutant exists only as a monomer. Here, we examine the in vivo effects of the pathogenic L166P and M26I mutations on the properties of DJ-1 in cell culture. We report that the L166P mutation confers markedly reduced protein stability to DJ-1, which results from enhanced degradation by the 20S/26S proteasome but not from a loss of mRNA expression. Furthermore, the L166P mutant protein exhibits an impaired ability to self-interact to form homo-oligomers. In contrast, the M26I mutation does not appear to adversely affect either protein stability, turnover by the proteasome, or the capacity of DJ-1 to form homo-oligomers. These properties of the L166P mutation may contribute to the loss of normal DJ-1 function and are likely to be the underlying cause of early onset PD in affected members of the Italian kindred.  相似文献   

2.
A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.  相似文献   

3.
Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson's disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons over-expressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ-1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function.  相似文献   

4.
5.
Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson's disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6.  相似文献   

6.
DJ-1 has a role in antioxidative stress to prevent cell death   总被引:12,自引:0,他引:12       下载免费PDF全文
Deletion and point (L166P) mutations of DJ-1 have recently been shown to be responsible for the onset of familial Parkinson's disease (PD, PARK7). The aim of this study was to determine the role of DJ-1 in PD. We first found that DJ-1 eliminated hydrogen peroxide in vitro by oxidizing itself. We then found that DJ-1 knockdown by short interfering RNA rendered SH-SY5Y neuroblastoma cells susceptible to hydrogen peroxide-, MPP+- or 6-hydroxydopamine-induced cell death and that cells harbouring mutant forms of DJ-1, including L166P, became susceptible to death in parallel with the loss of oxidized forms of DJ-1. These results clearly showed that DJ-1 has a role in the antioxidative stress reaction and that mutations of DJ-1 lead to cell death, which is observed in PD.  相似文献   

7.
Mutations in the PARK7/DJ-1 gene cause autosomal-recessive Parkinson's disease. In some patients the gene is deleted. The molecular basis of disease in patients with point mutations is less obvious. We have investigated the molecular properties of [L166P]DJ-1 and the novel variant [E64D]DJ-1. When transfected into non-neuronal and neuronal cell lines, steady-state expression levels of [L166P]DJ-1 were dramatically lower than wild-type [WT]DJ-1 and [E64D]DJ-1. Cycloheximide and pulse-chase experiments revealed that the decreased expression levels of [L166P]DJ-1 were because of accelerated protein turnover. Proteasomal degradation was not the major pathway of DJ-1 breakdown because treatment with the proteasome inhibitor MG-132 caused only minimal accumulation of DJ-1, even of the very unstable [L166P]DJ-1 mutant. Because of the structural resemblance of DJ-1 with bacterial cysteine proteases, we considered an autoproteolytic mechanism. However, neither pharmacological inhibition nor site-directed mutagenesis of the putative active site residue Cys-106 stabilized DJ-1. To gain further insight into the structural defects of DJ-1 mutants, human [WT]DJ-1 and both mutants were expressed in Escherichia coli. As in eukaryotic cells, expression levels of [L166P]DJ-1 were dramatically reduced compared with [WT]DJ-1 and [E64D]DJ-1. Circular dichroism spectrometry revealed that the solution structures of [WT]DJ-1 and [E64D]DJ-1 are rich in beta-strand and alpha-helix conformation. Alpha-helices were more susceptible to thermal denaturation than the beta-sheet, and [WT]DJ-1 was more flexible in this regard than [E64D]DJ-1. Thus, structural defects of [E64D]DJ-1 only become apparent upon denaturing conditions, whereas the L166P mutation causes a drastic defect that leads to excessive degradation.  相似文献   

8.
9.
Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, earlyonset Parkinson's disease. While one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point mutation, L166P, whose precise effects on protein function are unclear. In the present study, we show that L166P destabilizes DJ-1 protein and promotes its degradation through the ubiquitin-proteasome system. A double mutant (K130R, L166P) was more stable than L166P, suggesting that this lysine residue contributes to stability of the protein. Subcellular localization was broadly similar for both wild type and L166P forms of the protein, indicating that the effect of the mutation is predominantly on protein stability. These observations are reminiscent of other recessive gene mutations that produce an effective loss of function. The L166P mutation has the simple effect of promoting DJ-1 degradation, thereby reducing net DJ-1 protein within the cell.  相似文献   

10.
11.
ABSTRACT: BACKGROUND: Mutations or deletions in DJ-1/PARK7 gene are causative for recessive forms of early onset Parkinson's disease (PD). Wild-type DJ-1 has cytoprotective roles against cell death through multiple pathways. The most commonly studied mutant DJ-1(L166P) shifts its subcellular distribution to mitochondria and renders cells more susceptible to cell death under stress stimuli. We previously reported that wild-type DJ-1 binds to Bcl-XL and stabilizes it against ultraviolet B (UVB) irradiation-induced rapid degradation. However, the mechanisms by which mitochondrial DJ-1(L166P) promotes cell death under death stimuli are largely unknown. RESULTS: We show that DJ-1(L166P) is more prone to localize in mitochondria and it binds to Bcl-XL more strongly than wild-type DJ-1. In addition, UVB irradiation significantly promotes DJ-1(L166P) translocation to mitochondria and binding to Bcl-XL. DJ-1(L166P) but not wild-type DJ-1 dissociates Bax from Bcl-XL, thereby leading to Bax enrichment at outer mitochondrial membrane and promoting mitochondrial apoptosis pathway in response to UVB irradiation. CONCLUSION: Our findings suggest that wild-type DJ-1 protects cells and DJ-1(L166P) impairs cells by differentially regulating mitochondrial Bax/Bcl-XL functions.  相似文献   

12.
Parkinson disease (PD)- and cancer-associated protein, DJ-1, mediates cellular protection via many signaling pathways. Deletions or mutations in the DJ-1 gene are directly linked to autosomal recessive early-onset PD. DJ-1 has potential roles in mitochondria. Here, we show that DJ-1 increases its mitochondrial distribution in response to ultraviolet B (UVB) irradiation and binds to Bcl-X(L). The interactions between DJ-1 and Bcl-X(L) are oxidation-dependent. DJ-1(C106A), a mutant form of DJ-1 that is unable to be oxidized, binds Bcl-X(L) much less than DJ-1 does. Moreover, DJ-1 stabilizes Bcl-X(L) protein level by inhibiting its ubiquitination and degradation through ubiquitin proteasome system (UPS) in response to UVB irradiation. Furthermore, under UVB irradiation, knockdown of DJ-1 leads to increases of Bcl-X(L) ubiquitination and degradation upon UVB irradiation, thereby increasing mitochondrial Bax, caspase-3 activation and PARP cleavage. These data suggest that DJ-1 protects cells against UVB-induced cell death dependent on its oxidation and its association with mitochondrial Bcl-X(L).  相似文献   

13.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by oxidative stress and protein aggregation. Both toxic phenomena are mitigated by DJ-1, a homodimeric protein with proposed antioxidant and chaperone activities. The neuroprotective function of DJ-1 is modulated by oxidation of cysteine 106, a residue that may act as an oxidative stress sensor. Loss-of-function mutations in the DJ-1 gene have been linked to early onset PD, and age-dependent over-oxidation of DJ-1 is thought to contribute to sporadic PD. The familial mutant L166P fails to dimerize and is rapidly degraded, suggesting that protein destabilization accounts for the dysfunction of this mutant. In this study, we investigated how the structure and stability of DJ-1 are impacted by two other pathogenic substitutions (M26I and E64D) and by over-oxidation with H2O2. Whereas the recombinant wild-type protein and E64D both adopted a stable dimeric structure, M26I showed an increased propensity to aggregate and decreased secondary structure. Similar to M26I, over-oxidized wild-type DJ-1 exhibited reduced secondary structure, and this property correlated with destabilization of the dimer. The engineered mutant C106A had a greater thermodynamic stability and was more resistant to oxidation-induced destabilization than the wild-type protein. These results suggest that (i) the M26I substitution and over-oxidation destabilize dimeric DJ-1, and (ii) the oxidation of cysteine 106 contributes to DJ-1 destabilization. Our findings provide a structural basis for DJ-1 dysfunction in familial and sporadic PD, and they suggest that dimer stabilization is a reasonable therapeutic strategy to treat both forms of this disorder.  相似文献   

14.
Mutations in the PARK7 gene encoding DJ-1 cause autosomal recessive Parkinson disease. The most deleterious point mutation is the L166P substitution, which resides in a structure motif comprising two alpha-helices (G and H) separated by a kink. Here we subjected the C-terminal helix-kink-helix motif to systematic site-directed mutagenesis, introducing helix-incompatible proline residues as well as conservative substitutions into the helical interface. Furthermore, we generated deletion mutants lacking the H-helix, the kink, and the entire C terminus. When transfected into neural and nonneural cell lines, steady-state levels of G-helix breaking and kink deletion mutants were dramatically lower than wild-type DJ-1. The effects of H-helix breakers were comparably smaller, and the non-helix breaking mutants only slightly destabilized DJ-1. The decreased steady-state levels were due to accelerated protein degradation involving in part the proteasome. G-helix breaking DJ-1 mutations abolished dimer formation. These structural perturbations had functional consequences on the cytoprotective activities of DJ-1. The destabilizing mutations conferred reduced cytoprotection against H(2)O(2) in transiently retransfected DJ-1 knock-out mouse embryonic fibroblasts. The loss of survival promoting activity of the DJ-1 mutants with destabilizing C-terminal mutations correlated with impaired anti-apoptotic signaling. We found that wild-type, but not mutant DJ-1 facilitated the Akt pathway and simultaneously blocked the apoptosis signal-regulating kinase 1, with which DJ-1 interacted in a redox-dependent manner. Thus, the G-helix and kink are critical determinants of the C-terminal helix-kink-helix motif, which is absolutely required for stability and the regulation of survival-promoting redox signaling of the Parkinson disease-associated protein DJ-1.  相似文献   

15.
Fabry disease is a lysosomal storage disorder caused by the deficiency of alpha-Gal A (alpha-galactosidase A) activity. In order to understand the molecular mechanism underlying alpha-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal K(m) and V(max) values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) alpha-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q alpha-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant alpha-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant alpha-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations.  相似文献   

16.
Mutations in DJ-1, a protein of unknown function, were recently identified as the cause for an autosomal recessive, early onset form of familial Parkinson's disease. Here we report that DJ-1 is a dimeric protein that exhibits protease activity but no chaperone activity. The protease activity was abolished by mutation of Cys-106 to Ala, suggesting that DJ-1 functions as a cysteine protease. Our studies revealed that the Parkinson's disease-linked L166P mutation impaired the intrinsic folding propensity of DJ-1 protein, resulting in a spontaneously unfolded structure that was incapable of forming a homodimer with itself or a heterodimer with wild-type DJ-1. Correlating with the disruption of DJ-1 structure, the L166P mutation abolished the catalytic function of DJ-1. Furthermore, as a result of protein misfolding, the L166P mutant DJ-1 was selectively polyubiquitinated and rapidly degraded by the proteasome. Together these findings provide insights into the molecular mechanism by which loss-of-function mutations in DJ-1 lead to Parkinson's disease.  相似文献   

17.
18.
19.
Rare genetic mutations in the DJ-1 and Parkin genes cause recessive Parkinsonism, however, the relationship between these two genes is not fully elucidated. Current emerging evidence suggests that these genes are involved in mitochondrial homeostasis, and that a deficiency in either of these two genes is associated with damages in mitochondrial function and morphology. In this study, we demonstrated that knockdown of DJ-1 expression or the overexpression of the DJ-1 L166P mutation results in a damaged phenotype in mitochondria and a hypersensitivity to H2O2-induced cell apoptosis. These phenotypes result from increased levels of endogenous oxidative stress. However, overexpression of wild-type Parkin rescued the phenotypes observed in the mitochondria of DJ-1 knockdown and DJ-1 L166P mutant cells. We also determined that there were differences between the two cell models. Furthermore, both H2O2 treatment and the DJ-1 L166P mutation weakened the interaction between DJ-1 and Parkin. Taken together, these findings suggested that DJ-1 and Parkin were linked through oxidative stress, and that overexpression of Parkin protects DJ-1 protein-deficient and DJ-1 L166P mutant-expressing cells via inhibition of oxidative stress.  相似文献   

20.
Mutations in the DJ-1 protein are present in patients suffering from familial Parkinson disease. Here we use computational methods and biological assays to investigate the relationship between DJ-1 missense mutations and the protein oligomeric state. Molecular dynamics calculations suggest that: (i) the structure of DJ-1 wild type (WT) in aqueous solution, in both oxidized and reduced forms, is similar to the crystal structure of the reduced form; (ii) the Parkinson disease-causing M26I variant is structurally similar to the WT, consistent with the experimental evidence showing the protein is a dimer as WT; (iii) R98Q is structurally similar to the WT, consistent with the fact that this is a physiological variant; and (iv) the L166P monomer rapidly evolves toward a conformation significantly different from WT, suggesting a change in its ability to oligomerize. Our combined computational and experimental approach is next used to identify a mutant (R28A) that, in contrast to L166P, destabilizes the dimer subunit-subunit interface without significantly changing secondary structure elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号