首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson disease (PD)- and cancer-associated protein, DJ-1, mediates cellular protection via many signaling pathways. Deletions or mutations in the DJ-1 gene are directly linked to autosomal recessive early-onset PD. DJ-1 has potential roles in mitochondria. Here, we show that DJ-1 increases its mitochondrial distribution in response to ultraviolet B (UVB) irradiation and binds to Bcl-X(L). The interactions between DJ-1 and Bcl-X(L) are oxidation-dependent. DJ-1(C106A), a mutant form of DJ-1 that is unable to be oxidized, binds Bcl-X(L) much less than DJ-1 does. Moreover, DJ-1 stabilizes Bcl-X(L) protein level by inhibiting its ubiquitination and degradation through ubiquitin proteasome system (UPS) in response to UVB irradiation. Furthermore, under UVB irradiation, knockdown of DJ-1 leads to increases of Bcl-X(L) ubiquitination and degradation upon UVB irradiation, thereby increasing mitochondrial Bax, caspase-3 activation and PARP cleavage. These data suggest that DJ-1 protects cells against UVB-induced cell death dependent on its oxidation and its association with mitochondrial Bcl-X(L).  相似文献   

2.
Rare genetic mutations in the DJ-1 and Parkin genes cause recessive Parkinsonism, however, the relationship between these two genes is not fully elucidated. Current emerging evidence suggests that these genes are involved in mitochondrial homeostasis, and that a deficiency in either of these two genes is associated with damages in mitochondrial function and morphology. In this study, we demonstrated that knockdown of DJ-1 expression or the overexpression of the DJ-1 L166P mutation results in a damaged phenotype in mitochondria and a hypersensitivity to H2O2-induced cell apoptosis. These phenotypes result from increased levels of endogenous oxidative stress. However, overexpression of wild-type Parkin rescued the phenotypes observed in the mitochondria of DJ-1 knockdown and DJ-1 L166P mutant cells. We also determined that there were differences between the two cell models. Furthermore, both H2O2 treatment and the DJ-1 L166P mutation weakened the interaction between DJ-1 and Parkin. Taken together, these findings suggested that DJ-1 and Parkin were linked through oxidative stress, and that overexpression of Parkin protects DJ-1 protein-deficient and DJ-1 L166P mutant-expressing cells via inhibition of oxidative stress.  相似文献   

3.
4.
Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson's disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons over-expressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ-1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function.  相似文献   

5.
DJ-1 is a novel oncogene and causative gene for familial form of the Parkinson's disease (PD). DJ-1 has been shown to play a role in anti-oxidative stress by eliminating reactive oxygen species (ROS). The onset of PD is thought to be caused by oxidative stress and mitochondrial injury, which leads to protein aggregation that results in neuronal cell death. However, the mechanism by which DJ-1 triggers the onset of PD is still not clear. In this study, we analyzed association and localization of DJ-1 and its mutants with various chaperones. The results showed that DJ-1 and its mutants were associated with Hsp70, CHIP and mtHsp70/Grp75, a mitochondria-resident Hsp70, and that L166P and M26I mutants found in PD patients were strongly associated with Hsp70 and CHIP compared to wild-type and other DJ-1 mutants. DJ-1 and its mutants were colocalized with Hsp70 and CHIP in cells. Furthermore, association and colocalization of wildtype DJ-1 with mtHsp70 in mitochondria were found to be enhanced by treatment of cells with H2O2. These results suggest that translocation of DJ-1 to mitochondria after oxidative stress is carried out in association with chaperones.  相似文献   

6.
7.
8.
DJ-1 has a role in antioxidative stress to prevent cell death   总被引:12,自引:0,他引:12       下载免费PDF全文
Deletion and point (L166P) mutations of DJ-1 have recently been shown to be responsible for the onset of familial Parkinson's disease (PD, PARK7). The aim of this study was to determine the role of DJ-1 in PD. We first found that DJ-1 eliminated hydrogen peroxide in vitro by oxidizing itself. We then found that DJ-1 knockdown by short interfering RNA rendered SH-SY5Y neuroblastoma cells susceptible to hydrogen peroxide-, MPP+- or 6-hydroxydopamine-induced cell death and that cells harbouring mutant forms of DJ-1, including L166P, became susceptible to death in parallel with the loss of oxidized forms of DJ-1. These results clearly showed that DJ-1 has a role in the antioxidative stress reaction and that mutations of DJ-1 lead to cell death, which is observed in PD.  相似文献   

9.
10.
Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, earlyonset Parkinson's disease. While one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point mutation, L166P, whose precise effects on protein function are unclear. In the present study, we show that L166P destabilizes DJ-1 protein and promotes its degradation through the ubiquitin-proteasome system. A double mutant (K130R, L166P) was more stable than L166P, suggesting that this lysine residue contributes to stability of the protein. Subcellular localization was broadly similar for both wild type and L166P forms of the protein, indicating that the effect of the mutation is predominantly on protein stability. These observations are reminiscent of other recessive gene mutations that produce an effective loss of function. The L166P mutation has the simple effect of promoting DJ-1 degradation, thereby reducing net DJ-1 protein within the cell.  相似文献   

11.
Mutations in the PARK7/DJ-1 gene cause autosomal-recessive Parkinson's disease. In some patients the gene is deleted. The molecular basis of disease in patients with point mutations is less obvious. We have investigated the molecular properties of [L166P]DJ-1 and the novel variant [E64D]DJ-1. When transfected into non-neuronal and neuronal cell lines, steady-state expression levels of [L166P]DJ-1 were dramatically lower than wild-type [WT]DJ-1 and [E64D]DJ-1. Cycloheximide and pulse-chase experiments revealed that the decreased expression levels of [L166P]DJ-1 were because of accelerated protein turnover. Proteasomal degradation was not the major pathway of DJ-1 breakdown because treatment with the proteasome inhibitor MG-132 caused only minimal accumulation of DJ-1, even of the very unstable [L166P]DJ-1 mutant. Because of the structural resemblance of DJ-1 with bacterial cysteine proteases, we considered an autoproteolytic mechanism. However, neither pharmacological inhibition nor site-directed mutagenesis of the putative active site residue Cys-106 stabilized DJ-1. To gain further insight into the structural defects of DJ-1 mutants, human [WT]DJ-1 and both mutants were expressed in Escherichia coli. As in eukaryotic cells, expression levels of [L166P]DJ-1 were dramatically reduced compared with [WT]DJ-1 and [E64D]DJ-1. Circular dichroism spectrometry revealed that the solution structures of [WT]DJ-1 and [E64D]DJ-1 are rich in beta-strand and alpha-helix conformation. Alpha-helices were more susceptible to thermal denaturation than the beta-sheet, and [WT]DJ-1 was more flexible in this regard than [E64D]DJ-1. Thus, structural defects of [E64D]DJ-1 only become apparent upon denaturing conditions, whereas the L166P mutation causes a drastic defect that leads to excessive degradation.  相似文献   

12.
Anderson PC  Daggett V 《Biochemistry》2008,47(36):9380-9393
DJ-1 is a dimeric protein of unknown function in vivo. A mutation in the human DJ-1 gene causing substitution of proline for leucine at residue 166 (L166P) has been linked to early onset Parkinson's disease. Lack of structural stability has precluded experimental determination of atomic-resolution structures of the L166P DJ-1 polymorph. We have performed multiple molecular dynamics (MD) simulations ( approximately 1/3 mus) of the wild-type and L166P DJ-1 polymorph at physiological temperature to predict specific structural effects of the L166P substitution. L166P disrupted helices alpha1, alpha5, alpha6 and alpha8 with alpha8 undergoing particularly severe disruption. Secondary structural elements critical for protein stability and dimerization were significantly disrupted across the entire dimer interface, as were extended hydrophobic surfaces involved in dimer formation. Relative to wild-type DJ-1, L166P DJ-1 populated a broader ensemble of structures, many of which corresponded to distorted conformations. In a L166P dimer model the substitution significantly destabilized the dimer interface, interrupting >100 intermolecular contacts that are important for dimer formation. The L166P substitution also led to major perturbations in the region of a highly conserved cysteine residue (Cys-106) that participates in dimerization and that is critical for a proposed chaperone function of DJ-1. Cys-106 is located approximately 16 A from the substitution site, demonstrating that structural disruptions propagate throughout the whole protein. Furthermore, L166P DJ-1 showed a significant increase in hydrophobic surface area relative to wild-type protein, possibly explaining the tendency of the mutant protein to aggregate. These simulations provide details about specific structural disturbances throughout L166P DJ-1 that previous studies have not revealed.  相似文献   

13.
Mutations in DJ-1 gene have been linked to autosomal recessive early onset parkinsonism (AR-EOP). Although the mechanism of neuronal cell death due to DJ-1 mutation has not been fully elucidated, loss of DJ-1 function was considered to cause the phenotype. Here, we demonstrated that the down regulation of endogenous DJ-1 of the neuronal cell line by siRNA enhanced the cell death which was induced by oxidative stress, ER stress, and proteasome inhibition, but not by pro-apoptotic stimulus. The cell death with hydrogen peroxide was dramatically rescued by over-expression of wild-type DJ-1, but not by that of L166P mutant DJ-1. Furthermore, DJ-1 rescued the cell death caused by over-expression of Pael receptor, which was a substrate of Parkin, another gene product for autosomal recessive juvenile parkinsonism. These results suggest that loss of protective activity of DJ-1 from neuro-toxicity induced by these stresses contributes to neuronal cell death in AR-EOP with mutant DJ-1.  相似文献   

14.
Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson''s disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.  相似文献   

15.
The p53- and Bcl-2-negative leukemic K562 cell line showed resistant to DNA damage-induced Bax activation and apoptosis. The constitutive balanced ratio of Bax/Bcl-XL in K562 mitochondria allowed the formation of active Bax and cytochrome c release from mitochondria in the presence of a BH3-only protein, tBid, in a cell-free system. Bax transfection led to Bax undergoing a conformational change, translocation to mitochondria and homo-oligomerization but not apoptosis in the K562 cell line. After treatment with UV light, while Bcl-XL but not Bax translocated to mitochondria in K562, both Bax and Bcl-XL translocated to mitochondria in the Bax stable transfectant K/Bax cells. The increased ratio of Bax/Bcl-XL in K/Bax mitochondria led to an increased conformationally changed Bax, formation of the homo-multimer of Bax-Bax, and a reduced hetero-dimerization of Bax-Bcl-XL. Increased proportion of active Bax was accompanied with increased percentage of apoptosis. We therefore demonstrate that direct increase in the ratio of mitochondrial Bax/Bcl-XL can induce Bax activation in the p53- and Bcl-2-negative leukemic cells. Increased Bcl-XL translocation and failure in Bax translocation from cytosol to mitochondria play important roles in preventing Bax activation.  相似文献   

16.
17.
目的在细胞学水平比较DJ、DJ-1M26 I、DJ-1L166 P基因对NIH 3T3细胞增殖速率与凋亡的关系,为建立转基因动物模型及帕金森疾病发病机制研究奠定基础。方法分别将pcDNA3.1/myc-His-DJ-1、pcDNA3.1/myc-His-DJ-1L166 P和pcDNA3.1/myc-His-DJ-1M26 I重组质粒脂质体方法转染NIH 3T3细胞,500μg/ml G418压力筛选稳定克隆,对3种转染细胞在DNA水平、RNA水平和蛋白质水平进行鉴定,采用MTT染色方法和Annexin V-FITC试剂盒进行转染阳性克隆细胞的细胞活力与细胞凋亡检测。结果 pcDNA3.1/myc-His-DJ-1、pcDNA3.1/myc-His-DJ-1L166 P和pcDNA3.1/myc-His-DJ-1M26 I重组质粒转染NIH 3T3细胞经G418筛选后,PCR方法检测分别获得1个、4个、3个阳性细胞克隆,RT-PCR及Western blot方法进行DJ-1-His基因表达检测,结果均证明外源插入基因的表达,Caspase-3 RNA水平检测DJ-1L166 P和DJ-1M26 I组表达高于正常NIH 3T3细胞组,而DJ-1组caspase-3转录水平相对最低,MTT实验结果初步证明转染DJ-1L166 P和DJ-1M26 I基因的NIH3T3阳性细胞组细胞增殖速率均低于DJ-1组和正常NIH 3T3细胞组(P〈0.05),转染DJ-1基因的NIH 3T3阳性细胞增殖速率与正常NIH 3T3细胞相比无明显差别;细胞凋亡检测表明转染DJ-1L166 P和DJ-1M26 I基因的NIH3T3阳性细胞凋亡率均高于正常NIH 3T3细胞,转染DJ-1基因的NIH 3T3阳性细胞凋亡率低于正常NIH 3T3细胞(P〈0.05)。结论 DJ-1L166 P和DJ-1M26 I基因突变均降低NIH3T3细胞增殖速率,DJ-1L166 P和DJ-1M26 I基因突变更易导致NIH 3T3细胞的凋亡,DJ-1L166 P和DJ-1M26 I基因突变对NIH3T3细胞增殖速率和细胞凋亡影响是相似的。  相似文献   

18.
Parkinson’s disease (PD), one of the most common neurodegenerative disorders, is characterized by progressive neurodegeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). DJ-1 acts essential roles in neuronal protection and anti-neuroinflammatory response, and its loss of function is tightly associated with a familial recessive form of PD. However, the molecular mechanism of DJ-1 involved in neuroinflammation is largely unclear. Here, we found that wild-type DJ-1, rather than the pathogenic L166P mutant DJ-1, directly binds to the subunit p65 of nuclear factor-κB (NF-κB) in the cytoplasm, and loss of DJ-1 promotes p65 nuclear translocation by facilitating the dissociation between p65 and NF-κB inhibitor α (IκBα). DJ-1 knockout (DJ-1−/−) mice exhibit more microglial activation compared with wild-type littermate controls, especially in response to lipopolysaccharide (LPS) treatment. In cellular models, knockdown of DJ-1 significantly upregulates the gene expression and increases the release of LPS-treated inflammatory cytokines in primary microglia and BV2 cells. Furthermore, DJ-1 deficiency in microglia significantly enhances the neuronal toxicity in response to LPS stimulus. In addition, pharmacological blockage of NF-κB nuclear translocation by SN-50 prevents microglial activation and alleviates the damage of DA neurons induced by microglial DJ-1 deficiency in vivo and in vitro. Thus, our data illustrate a novel mechanism by which DJ-1 facilitates the interaction between IκBα and p65 by binding to p65 in microglia, and thus repressing microglial activation and exhibiting the protection of DA neurons from neuroinflammation-mediated injury in PD.Subject terms: Cell death in the nervous system, Parkinson''s disease  相似文献   

19.
C(6)-pyridinium (D-erythro-2-N-[6'-(1'-pyridinium)-hexanoyl]sphingosine bromide [LCL29]) is a cationic mitochondrion-targeting ceramide analog that promotes mitochondrial permeabilization and cancer cell death. In this study, we compared the biological effects of that compound with those of D-erythro-C(6)-ceramide, its non-mitochondrion-targeting analog. In MCF7 cells it was found that C(6)-pyridinium ceramide preferentially promoted autophagosome formation and retarded cell growth more extensively than its uncharged analog. This preferential inhibition of cell growth was also observed in breast epithelial cells and other breast cancer cells. In addition, this compound could promote Bax translocation to mitochondria. This redistribution of Bax in MCF7 cells could be blocked by the pan-caspase inhibitor zVAD-fmk but via a Bid-independent signaling pathway. Moreover, C(6)-pyridinium ceramide-induced translocation of Bax to mitochondria led to mitochondrial permeabilization and cell death. Overall, we show that mitochondrial targeting of C(6)-pyridinium ceramide significantly enhances cellular response to this compound.  相似文献   

20.
Sevoflurane, an inhaled ether general anesthetic agent, exerts a variety of neurotoxic effects, including oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. However, the underlying molecular mechanisms remain to be elucidated. DJ-1 is a protein that exerts neuroprotective effects against different kinds of stress through multiple pathways. This study aimed to investigate the neuroprotective effects of DJ-1 against sevoflurane-induced neurotoxicity. Here, we found that sevoflurane treatment significantly increased DJ-1 expression in human neuroblastoma M17 cells in a dose-dependent manner at both the mRNA and protein levels. Interestingly, we found that overexpression of wild-type (WT) DJ-1 prevented sevoflurane-induced generation of reactive oxygen species (ROS) and nitric oxide (NO), deletion of reduced GSH, reduction of adenosine triphosphate (ATP), and mitochondrial membrane potential. Interestingly, we found that WT DJ-1 could inhibit sevoflurane-induced apoptosis by modulating the mitochondrial pathway. However, its “loss of function” mutation DJ-1(L166P) exacerbated sevoflurane-induced neurotoxicity in M17 cells. Our findings suggest that WT DJ-1 protects neuronal cells against sevoflurane-induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号