首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
Aims In the Xilin Gol Steppe, human-induced grassland degradation and land desertification are becoming increasingly severe. Critical evaluation of its impact on soil water and recharge rate is important for sustainable management of soil health and water resources in the region. Methods In order to determine the effect of different grazing history on dynamics of deep soil moisture contents and precipitation infiltration in the Xilin Gol Steppe, three sites with different grazing history (ungrazed since 1979 or UG79, ungrazed since 1999 or UG99, and continuously grazed or CG) were selected with two sampling spots for each site. The precipitation infiltration was estimated using the chloride mass balance method. Important findings The results showed that: 1) Average soil water content of 0–5 m was 7.1%, 6.9%, and 6.3% for UG79, UG99, and CG, respectively, with no significant difference. In the soil layer of 0–2 m, the soil water content of UG79 was 26.6% and 33.7% higher than that of UG99 and CG, respectively. The soil water content of UG79 was significantly higher than that of UG79 and UG99 (p < 0.05) with no significant difference between UG99 and CG. The soil water storage capacity of UG79 was 87.19 mm higher than UG99 and 82.52 mm higher than CG. In the deep layer of 2–5 m, no significant difference in the soil water content and the water storage among different grazing history. 2) The factors influencing soil water differed among different grazing treatments. The soil water content was mainly affected by the vegetation conditions and soil properties for the 0–2 m soil layer, but by the composition of soil particles for the 2–5 m soil layer. The effect of soil organic matter (SOM) content on soil water increased with time without grazing. Soil water content of the entire soil profile of UG79 was significantly correlated with soil texture and SOM content (p < 0.01). Soil water content of 0–2 m was significantly correlated with SOM content (p < 0.01), soil water content of 2–5 m was significantly correlated with the soil texture (p <0.01), but soil moisture content of UG99 and CG had no significant correlation with SOM content. 3) Annual recharge rate was 5.64, 3.54, and 2.45 mm·a –1 for UG79, UG99 and CG, respectively. The recharge rate increased by 44.5% and 130.2% for the site without grazing for 15 and 35 years, respectively. The recharge rate in the study area ranged from 1.95 to 7.61 mm·a –1 , accounting for only 0.55%–2.13% of the precipitation. In summary, ungrazing treatment can increase soil water retention, total water storage capacity, and recharge. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

2.
Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12 plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation, were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high △^14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest, the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types, together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter dynamics.  相似文献   

3.
Liu X L  Chen Q W  Zeng Z X 《农业工程》2009,29(4):249-253
A large quantity of leaf litter was left on soil surface after soybean (Glycine max) harvest in the black soil region, northeast of China, where soybean was planted with the largest area. This paper investigated the effects of different fall tillage practices on soybean leaf litter sequestration into soil, and the subsequently durative effects on soil biological and biochemical properties during the next growing season. Two practices were investigated, fall tillage (T) and no fall tillage (NT) after soybean harvest in autumn. Results showed that the residue biomass on soil surface and in subsoil profile (0–20 cm) after soybean harvest was about 1450 kg ha?1 and 340 kg ha?1, respectively in October 2006. The residue biomass on soil surface and in subsoil profile was about 84 kg ha?1, 1581 kg ha?1 for T, and 423 kg ha?1, 340 kg ha?1 for NT respectively in May 2007. It was obvious that T practice can more effectively sequester leaf litter into soil compared to NT. Results also showed that T practices after soybean harvest eminently improved soil microbial carbon biomass and nitrogen biomass contents, and significantly improved soil urease and acid phosphate activities than NT. No significant difference of dehydrogenase activity was found between N and NT. The positive effects of T treatment on Soil microbial properties and soil enzymes activities among the next growing season due to soybean residues sequestration performed durative profit.  相似文献   

4.
A large quantity of leaf litter was left on soil surface after soybean (Glycine max) harvest in the black soil region, northeast of China, where soybean was planted with the largest area. This paper investigated the effects of different fall tillage practices on soybean leaf litter sequestration into soil, and the subsequently durative effects on soil biological and biochemical properties during the next growing season. Two practices were investigated, fall tillage (T) and no fall tillage (NT) after soybean harvest in autumn. Results showed that the residue biomass on soil surface and in subsoil profile (0–20 cm) after soybean harvest was about 1450 kg ha?1 and 340 kg ha?1, respectively in October 2006. The residue biomass on soil surface and in subsoil profile was about 84 kg ha?1, 1581 kg ha?1 for T, and 423 kg ha?1, 340 kg ha?1 for NT respectively in May 2007. It was obvious that T practice can more effectively sequester leaf litter into soil compared to NT. Results also showed that T practices after soybean harvest eminently improved soil microbial carbon biomass and nitrogen biomass contents, and significantly improved soil urease and acid phosphate activities than NT. No significant difference of dehydrogenase activity was found between N and NT. The positive effects of T treatment on Soil microbial properties and soil enzymes activities among the next growing season due to soybean residues sequestration performed durative profit.  相似文献   

5.
Understanding soil carbon fractions and their responses to the global warming is important for improving soil carbon management of natural altitudinal forest ecosystem. In this study, the contents of soil total organic carbon (SOC), soil labile organic carbon (LOC), and microbial biomass carbon (MBC) in soil upper layers (0–20 cm) were measured along a natural altitudinal transect in the north slope of Changbai Mountain. The results showed that under natural conditions the contents of SOC and LOC were largest in Betula ermanii forest (altitude 1996 m), moderate in spruce-fir forest (altitude 1350 m), and smallest in Korean pine mixed broad-leaf tree forest (altitude 740 m). MBC contents in different forest ecosystems decreased in the order of Betula ermanii forest, Korean pine mixed broad-leaf tree forest, and dark coniferous forest. In addition, the responses of SOC, LOC, and MBC to soil warming were conducted by relocating intact soil cores from high- to low-elevation forests for one year. As expected, the soil core relocation caused significant increase in soil temperature but made no significant effect on soil moisture. After one year incubation, soil relocation significantly decreased SOC contents, whereas the contents of LOC, MBC, and the ratios of LOC to SOC and MBC to SOC increased.  相似文献   

6.
Understanding soil carbon fractions and their responses to the global warming is important for improving soil carbon management of natural altitudinal forest ecosystem. In this study, the contents of soil total organic carbon (SOC), soil labile organic carbon (LOC), and microbial biomass carbon (MBC) in soil upper layers (0–20 cm) were measured along a natural altitudinal transect in the north slope of Changbai Mountain. The results showed that under natural conditions the contents of SOC and LOC were largest in Betula ermanii forest (altitude 1996 m), moderate in spruce-fir forest (altitude 1350 m), and smallest in Korean pine mixed broad-leaf tree forest (altitude 740 m). MBC contents in different forest ecosystems decreased in the order of Betula ermanii forest, Korean pine mixed broad-leaf tree forest, and dark coniferous forest. In addition, the responses of SOC, LOC, and MBC to soil warming were conducted by relocating intact soil cores from high- to low-elevation forests for one year. As expected, the soil core relocation caused significant increase in soil temperature but made no significant effect on soil moisture. After one year incubation, soil relocation significantly decreased SOC contents, whereas the contents of LOC, MBC, and the ratios of LOC to SOC and MBC to SOC increased.  相似文献   

7.
By means of single and mixed inoculation, this paper studied the interspecific competition between T. confusum and T. pretiosum on the factitious eggs of Corcyra cephaloica under different parasitoid densities, host densities and inoculated spaces. The results showed that for both singly and mixed inoculated groups, the parasitism increased with parasitoid density but decreased with host density, whereas the percentage of female progeny dropped with parasitoid density but enhanced with host density. No significant effect was observed on adult emergence for all parasitoid and host density treatments. In mixed inoculated group, the proportion of T. pretiosum in the progeny decreased with parasitoid density but increased with host density, and was more than 50% in all treatments, indicating that T. pretiosum had a stronger competitive ability than T. confusum. In the spaces ranging from 4cm^3 to 102cm^3, the parasitism decreased gradually in both singly and mixed inoculated groups. The percentage of female progeny and adult emergence had no significant difference among different inoculated spaces. In mixed inoculated group, the proportion of T. pretiosum in the progeny was more than 50% in all treatments except space 102 cm3, but decreased with space, which suggested that T. confusum could improve their competitive ability through increasing their search areas and looking for more hosts.  相似文献   

8.
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

9.
Liu Y  Zhong Z C 《农业工程》2009,29(2):124-129
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

10.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electro-phoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg·kg-1 dry soil) or Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg·kg-1 dry soil) and imidacloprid (0.5 mg-kg~1 dry soil). Roots of Vicia faba were exposed to the contaminated soil for 2 h at 25℃and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips of Vicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd  相似文献   

11.
A large, genetically diverse pool of Bemisia argentifolii Bellows & Perring was collected in 1994 from different crops, and a mixed colony was established in the laboratory. Subsets of this colony were reared on cotton plants held in large Plexiglas cages, and adult whiteflies were selected for resistance to fenpropathrin and to fenpropathrin + acephate (1:5). Selection was performed by exposing adults to treated glass vials at doses sufficient to give 60-80% mortality. Thirteen generations of adult selection with fenpropathrin + acephate yielded 856.3- and 1,289.3-fold tolerance (using lethal concentration ratio), respectively, to fenpropathrin and to fenpropathrin + acephate, indicating additive genetic variation for resistance in the source population. Selection with fenpropathrin alone yielded only a 10.9-fold increase in tolerance to fenpropathrin at the end of the selection period. There was no significant change in tolerance to fenpropathrin + acephate in this strain. Contrary to expectations, the early onset and the magnitude of resistance attained on selection with fenpropathrin + acephate compared with fenpropathrin alone indicates that this mixture evidently possesses a high degree of selectivity for development of resistance in B. argentifolii. Estimates of realized heritability of resistance to fenpropathrin and to fenpropathrin + acephate in B. argentifolii (in the fenpropathrin + acephate-selected strain) showed that they were significantly higher in the first half of selection (six generations), in both instances. Rearing of the fenpropathrin + acephate-resistant strain under conditions free of insecticides for six generations did not result in any significant decline in resistance, indicating that resistance is fairly stable.  相似文献   

12.
Enzyme immunoassay (EIA) microtiter plate analysis was used to quantify atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐1,3,5 triazine), fortified at 0, 50, and 500 or 549 ng/g, to Baxter and Maury silt loam soil sampled in 1965 and 1991. In the first experiment, aged soils (sampled in 1965 and stored air‐dried) were fortified with atrazine and then incubated in the dark at 0, 75, 150, 225 and 300 g/kg moisture for 15, 80, 154, and 289 d. In a second experiment, fresh soils were fortified with atrazine and incubated in the dark at 0, 150, and 300 g/kg moisture for 9, 15, 35, 55, 83, and 145 d. One half of the treatments in the second experiment were sterilized with 497 ng/g HgCl2. Twenty milliliters of acetonitrile: water (9: 1) was used to extract 4 or 5 g of soil by vortex mixing at each sampling date. The soil extract was diluted, 80 μl incubated with antibody‐coated wells, and color development read using a microtiter plate reader. Recovery of atrazine from soil was 98% 5 d after fortification. Pesticide recoveries and first‐order degradation rates were dependent on the freshness and moisture content of the soil sample. Pesticide degradation was slower and recoveries higher in soil that had been air dried and stored since 1965, prior to fortification. More atrazine was extracted from soil maintained at 0 g/kg moisture than from soil maintained at 300 g/kg moisture over time.  相似文献   

13.
Tephrocybe tesquorum is an ammonia fungus that forms reproductive structures successively on the forest floor after treatment of the soil with nitrogenous materials such as aqua ammonia and urea. Forest soil was treated with urea at the rates of 0, 5, 10 and 20 mg/g fresh soil for 5 d in the laboratory, then sterilized by gamma-irradiation. Vegetative hyphae ofT. tesquorum were inoculated into the sterilized soil, and the number and weight of fruit-bodies formed and the length of vegetative hyphae, were measured for 20 d after the inoculation. Only in the urea-treated soil did this fungus produce vegetative hyphae and fruit-bodies. Fruiting started 4 to 6 d after inoculation. The weight of fruit-bodies and the length of vegetative hyphae increased with the increase in the amount of urea added. These results indicate thatT. tesquorum develops vegetative hyphae and fruit-bodies when ammonium concentration, is high in soil.  相似文献   

14.
Abstract:  To investigate fluctuation in susceptibility to insecticides in the field, natural populations of Helicoverpa armigera were collected from the same field in the region of Multan, Pakistan in 2002 and 2003. The populations were examined against pyrethroids (viz. cypermethrin, esfenvalerate and fenpropathrin) and new insecticides (viz. spinosad, abamectin and indoxacarb). In 2002, the resistance ratio (RR) of cypermethrin and esfenvalerate was significantly higher than fenpropahrin compared with susceptible population. The susceptibility to cypermethrin, esfenvalerate and fenpropathrin increased significantly in 2003; however, the RR for cypermethrin was about half the RR (38) of esfenvalerate (101) and fenpropathrin (89). The toxicity of spinosad, abamectin and indoxacarb was identical in both years. In the field experiments, abamectin was more effective than other compounds tested whereas fenpropathrin, cypermethrin and esfenvalerate had similar toxicity. These results might have important implications in resistance management and suggest that the rotational use of spinosad, abamectin and indoxacarb could help to avoid the development of multiple resistant in H. armigera .  相似文献   

15.
二斑叶螨对甲氰菊酯的抗性选育及解毒酶活力变化   总被引:5,自引:0,他引:5  
为了明确二斑叶螨Tetranychus urticae Koch对甲氰菊酯产生抗性的机理,在室内模拟田间药剂的选择压力, 用甲氰菊酯对二斑叶螨敏感品系(S)进行逐代汰选,选育至38代时, 获得了抗性倍数( resistance ratio, RR)为247.35的抗甲氰菊酯品系(Fe-R)。对S和Fe-R解毒酶活性的分析表明,Fe-R38体内羧酸酯酶(carboxylesterase, CarE)、酸性磷酸酯酶(acid phosphatase, ACP)、 碱性磷酸酯酶(alkaline phosphatase, ALP)、谷胱甘肽-S-转移酶(glutathione s-transferase, GSTs)和多功能氧化酶(mixed function oxidase, MFO)较S体内相应酶的活力显著升高(P< 0.05),其相对比值(R/S)分别为1.822,13.941,3.789,4.262和17.386。此外,筛选至第9,19,25,32代时,除Fe-R25和Fe-R32的MFO活性与S相比有显著性差异(P< 0.05)外,其余解毒酶(CarE,ACP,ALP,GSTs)的活性与S相比均无显著性差异(P>0.05)。筛选至第38代时, 5种解毒酶的活力与S相比均差异显著(P<0.05)。结果说明二斑叶螨Fe-R随着筛选代数的增加(第25代后),MFO活性的上升可能是二斑叶螨对甲氰菊酯产生抗性的主要原因。  相似文献   

16.
Wang FY  Tong RJ  Shi ZY  Xu XF  He XH 《PloS one》2011,6(2):e16949

Background

As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C12H15N2O3PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown.

Methodology/Principal Findings

A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l−1, while 400 mg l−1 rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils.

Conclusions/Significance

Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils.  相似文献   

17.
为了筛选出对荔枝蝽Tessaratoma papillosa高效低毒低投入的药剂,在室内采用喷雾法初步测定了16种常用杀虫剂对荔枝蝽成虫的活性,进一步测定了辛硫磷、丁醚脲和氟啶虫胺腈等3种药剂对荔枝蝽成虫、1龄若虫和2龄若虫的室内毒力,并开展了3种杀虫剂对荔枝蝽的田间防效试验。室内毒力结果表明:甲氰菊酯、杀虫双、阿维菌素、甲氨基阿维菌素苯甲酸盐、哒螨灵、茚虫威、虫螨腈、多杀霉素、乙基多杀霉素、灭蝇胺、异丙威等11种药剂对荔枝蝽成虫活性较低,辛硫磷、丁醚脲和氟啶虫胺腈对荔枝蝽有较高的杀虫活性,3种药剂对成虫72 h后的LC50分别为102.32、226.88和207.59 mg/L,对1龄若虫分别为42.41、120.90和87.59 mg/L,对2龄若虫分别为62.65、180.20和148.75 mg/L。在田间防效试验中,辛硫磷对荔枝蝽成虫药后1 d的防效高达82.46%;氟啶虫胺腈对荔枝蝽成虫药后1 d防效达89.23%,药后7 d防效维持在85.03%;丁醚脲对荔枝蝽成虫的最高防效为71.63%,与高效氯氟氰菊酯的防效相当。辛硫磷、丁醚脲和氟啶虫胺腈的防效投入比分别为9.68、36.25和176.41。辛硫磷投入低、速效性好且光解快,可作为防治荔枝蝽的应急药剂使用,氟啶虫胺腈和丁醚脲防效较好,但投入高,可作为对荔枝蝽有重要潜在研究价值的药剂。  相似文献   

18.
The enantioselective degradation behavior of the chiral insecticide dinotefuran in cucumber and soil was investigated under greenhouse conditions based on the method established with a normal‐phase high‐performance chromatography (HPLC) on a ChromegaChiral CCA column (250 × 4.6 mm, 5 µm, ES Industries). The linearity range, matrix effect, precision, and accuracy of the method were evaluated and the method was then successfully applied for the enantioselective analysis of dinotefuran in cucumber and soil. Significant enantioselectivity of degradation was observed in soil according to the results. The (+)‐dinotefuran was more persistent in soil with half‐life of 21.7 d, which is much longer than that of (–)‐dinotefuran (16.5 d). In cucumber, the (–)‐dinotefuran also tended to be preferentially degraded both in foliar and douche treatment. However, the statistical analysis indicated the enantioselectivity of degradation in cucumber was not significant. The research provides the first report concerning the enantioselective degradation of dinotefuran enantiomers and the results can be used for understanding the insect‐controlling effect and food safety evaluation. Chirality 27:137–141, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
在室内模拟田间药剂的选择压力,用阿维菌素、哒螨灵和甲氰菊酯对二斑叶螨Tetranychuc urticae逐代处理,以选育其抗性种群。选育至12代,对阿维菌素抗性增长到6.72倍,对哒螨灵抗性增长到12.1倍,对甲氰菊酯抗性增长到19.9倍。酶抑制剂和离体酶活性的测定结果表明,阿维菌素抗性种群的多功能氧化酶和谷胱甘肽S-转移酶的活性均有所提高;二斑叶螨对哒螨灵的抗性可能与多功能氧化酶、羧酸酯酶的活性增强有关;而羧酸酯酶、多功能氧化酶和谷胱甘肽S-转移酶活性的增强可能是二斑叶螨对甲氰菊酯产生抗性的主要原因。  相似文献   

20.
Zhang S  Yin L  Liu Y  Zhang D  Luo X  Cheng J  Cheng F  Dai J 《Biodegradation》2011,22(5):869-875
A novel bacterial strain capable of degrading the pyrethroid pesticide fenpropathrin was isolated from mixed wastewater and sludge samples. Phylogenetic analysis of the 16S rDNA sequence revealed that the organism belongs to the genus Clostridium. The organism can co-metabolically transform fenpropathrin at 100?mg?l(-1) at 35°C and pH 7.5 in 12?days. Metabolic products of fenpropathrin from strain ZP3 were examined by gas chromatography/mass spectrometry, and the results showed that the organism degraded fenpropathrin with an oxidization process to yield benzyl alcohol, benzenemethanol, 3,5-dimethylamphetamine. Analyses of cell-free extracts from this strain showed that the optimal degrading conditions for degrading fenpropathrin were 35°C and pH 7.5, and degradation efficiency was 20.0?mg?l(-1)?day(-1), and it might be potential using for rapid treating fenpropathrin, for example, on the surface of fruits and vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号