首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 194 毫秒
1.
大葱组织培养中玻璃苗特性研究   总被引:5,自引:1,他引:4  
以章丘大葱为试验材料,从形态组织学及生理生化等方面探讨了大葱试管苗玻璃化发生的可能机理。结果表明,玻璃苗形态组织结构与正常苗有很大差异,玻璃苗组织含水量增加,过氧化物酶(POD)活性增强,叶绿素总量、叶绿素a、叶绿素b、过氧化氢酶(CAT)的活性、可溶性蛋白含量均降低。玻璃苗酯酶同工酶谱带与正常苗相比,增加了一条带,同时缺少了两条带;可溶性蛋白电泳分析表明,玻璃苗与正常苗间也存在明显差异。可见,当外界环境条件不适宜植物生长需要时,植物体在基因表达水平上将会受到影响,表达产物的差异可引起生理代谢功能上的紊乱,从而导致形态结构的畸型,进而产生玻璃化苗。  相似文献   

2.
梨芽离体快繁过程中玻璃化苗的发生与氧自由基胁迫的关系   总被引:12,自引:1,他引:11  
优质梨“苹博1号”的芽离体快繁过程中发生的玻璃化苗与其它植物的玻璃化苗相似,试验对其氧自由基清除酶活性和膜脂过氧化水平进行了研究。结果表明;正常试管苗和玻璃轩的过氧化物酶,过氧化氢酶,超氧化物歧化酶的活性和丙二醛含量普遍随培养时间而呈升高趋势;但玻璃化苗的后两种酶活性低于正常苗,可溶性蛋白含量也显著低于正常值,丙二醛水平却显著高于正常苗,提示梨快繁过程中有氧自由基的胁迫,而且玻璃化苗发生了更严重的  相似文献   

3.
在网纹甜瓜继代培养过程中加入不同浓度的AgNO3,测定试管苗糖代谢及抗氧化酶活性等。结果表明,玻璃苗果糖、葡萄糖和可溶性糖含量显著降低,而蔗糖含量显著高于正常苗;抗氧化系统发生紊乱,O2产生速率降低,H2O2含量下降,MDA含量增加,木质素含量降低。加入30μmol·L^-1AgNO,使玻璃苗蔗糖合成酶、蔗糖转化酶活性和木质素含量与正常苗差异不显著。说明适当浓度AgNO3有利于维持试管苗糖代谢正常进行,降低试管苗脂质过氧化程度,从而降低或抑制玻璃化现象的发生。  相似文献   

4.
研究了蓝莓试管苗玻璃化的显微结构、超微结构以及生理生化特性的影响。与正常试管苗相比,蓝莓玻璃化苗的茎、叶显微结构发生了明显的改变:叶片表皮细胞松散、不连续;气孔结构难以辨认;叶片增厚;缺少栅栏组织,海绵组织细胞间隙变大,部分细胞解体;茎的维管组织发育不良;亚显微结构观察发现,玻璃化苗叶肉细胞体积增大,细胞壁变薄;部分细胞缺少细胞核及线粒体;叶绿体数目减少,类囊体解体,缺乏淀粉体。玻璃化试管苗的生理生化特性也发生了显著的改变:玻璃化苗组织含水量显著增加;叶绿素、可溶性糖及可溶性蛋白含量显著降低;O2- 产生速率、H2O2积累量、MDA含量及相对电导率显著升高;活性氧清除酶系中POD活性显著升高,SOD和CAT活性显著降低;PAL活性下降。蓝莓玻璃化苗的形态结构异常,水分及物质代谢紊乱,活性氧清除能力降低,表明玻璃化与氧化胁迫相关。  相似文献   

5.
盐胁迫对黄独脱毒苗生长和若干生理生化指标的影响   总被引:1,自引:1,他引:0  
通过在培养基中添加不同浓度NaCl,探讨盐胁迫对黄独脱毒苗生长及若干生理生化指标的影响。结果表明,在盐胁迫条件下,黄独脱毒苗的生长受到明显抑制,叶片中总叶绿素含量、SOD活性下降,丙二醛含量增加,脯氨酸大量积累;随盐胁迫强度的加大,对试管苗生长及生理生化指标的影响相应加剧;在盐胁迫下,黄独脱毒苗叶片脯氨酸含量与丙二醛含量呈极显著正相关,而与叶绿素含量和SOD活性呈极显著负相关。因此,盐胁迫下叶片中脯氨酸含量的变化可作为黄独脱毒苗受害程度的主要生理鉴定指标。  相似文献   

6.
烯效唑对青钱柳试管苗生长及生理特性的影响   总被引:2,自引:0,他引:2  
在含0.00(CK)、0.01、0.05、0.10和1.00 mg·L-1烯效唑的WPM培养基上继代培养120 d后,对青钱柳[Cyclocarya paliurus (Batal.)Iljinskaja]试管苗的部分生长及生理指标的变化进行了比较研究.结果显示:不同质量浓度烯效唑对青钱柳试管苗的生长及生理指标有不同的影响效应.总体上,随培养基中烯效唑质量浓度的提高,青钱柳试管苗的苗高、叶片数和可溶性蛋白质含量逐渐降低,可溶性糖与可溶性蛋白质含量的比值、SOD和POD活性逐渐提高;在培养基中添加0.01、0.05和0.10 mg·L-1烯效唑对青钱柳试管苗的成活率无显著影响,却可使试管苗的单株鲜质量增加量、叶绿素含量和可溶性糖含量均高于对照;在培养基中添加1.00 mg·L-1烯效唑能显著或极显著降低试管苗的成活率、单株鲜质量增加量、分化芽数、苗高、叶片数以及叶绿素含量、可溶性糖含量和可溶性蛋白质含量,并使苗茎出现异常增粗和矮化.而在含0.10 mg·L-1烯效唑的培养基上,虽然试管苗的苗高、分化芽数和叶片数分别较对照降低了28.03%、9.70%和12.37%,但试管苗的单株鲜质量增加量、叶绿素含量、可溶性糖含量、可溶性糖与可溶性蛋白质含量的比值、 SOD和POD活性分别较对照提高了99.39%、 14.00%、 5.00%、115.43%、129.77%和33.79%.研究结果表明,在培养基中添加0.10 mg·L-1烯效唑可有效改善青钱柳试管苗的生长和生理特性,有效控制苗高和叶片数,促进苗茎的增粗,有助于增强试管苗的抗逆能力.  相似文献   

7.
植物离体培养中玻璃苗的发生及防治   总被引:5,自引:0,他引:5  
试管植物的玻璃化现象在植物组织培养中发生极为普遍,玻璃苗失去增殖和生根能力,在形态、解剖结构及生理生化特性等方面都与正常苗有明显差别。很多因子影响玻璃苗发生,培养体系的水分状况不适如培养基水势高、培养容器相对湿度大时玻璃苗比率高;培养基 BA 浓度高时玻璃苗急剧增加;培养基中较高的氨态氮比例及  相似文献   

8.
柳叶烟草愈伤组织在分化和芽原基形成期间,DNA 和RNA 含量均高于继代培养物;在芽原基形成后和幼芽生长期间(12天以后),DNA和RNA 含量持续上升,而同期继代培养物巳进入生长静止期,DNA 和RNA 含量基本不变或略有下降。根据RNA 电泳结果还进一步分析了两种愈伤组织培养物各RNA 组分变化与总RNA 含量变化的关系。分化培养物在芽原基形成时有明显升高的RNase 活性峰和持续上升的RNA 合成速率;而此时期继代培养物的RNase 活性及RNA 合成能力均较低;分化愈伤组织的DNA 合成速率在幼芽生长期间仍维持上升趋势,且显著高于同期继代愈伤组织的合成速率。这些结果表明,烟草愈伤组织分化培养物比继代培养物有更旺盛的核酸代谢能力。  相似文献   

9.
外源H2O2胁迫对大蒜试管苗玻璃化的影响   总被引:1,自引:0,他引:1  
以大蒜品种‘二水早’为材料,研究不同浓度外源H2O2胁迫对大蒜试管苗的玻璃化发生及生理生化变化的影响.结果表明,在不同浓度外源H2O2处理下,大蒜玻璃化试管苗百分率、组织含水量、MDA含量、电解质渗透率、SOD和POD活性均高于对照,且随H2O2浓度的增加而升高,叶绿素含量则表现相反的趋势;在同一H2O2浓度下,大蒜玻璃化试管苗的组织含水量、MDA含量、电解质渗透率、SOD、POD和CAT活性均显著高于大蒜正常试管苗,叶绿素含量低于正常试管苗.研究发现,外源H2O2胁迫对大蒜试管苗玻璃化有促进作用.  相似文献   

10.
结球白菜离体子叶不定芽再生过程中的组织学及生理变化   总被引:4,自引:0,他引:4  
以日本引进品种爱知结球白菜(Brassica rapa ssp.pekinensis CV.AiehiHakusai,C1)为试材,对离体子叶不定芽再生过程中的组织学和生理变化进行了研究。结果表明,子叶在离体培养过程中,不定芽发生方式为器官直接发生。在不定芽形成前,可溶性蛋白质含量、POD和SOD的活性均呈上升趋势。随着细胞的脱分化,代谢活动逐渐旺盛,酶活性增强,可溶性蛋白质含量增加,表明不定芽形成过程中形态变化与生理变化紧密相联。培养基中添加AgNO3对酶活性有促进作用,并促进不定芽的分化。  相似文献   

11.
Summary The type of gelling agent can influence to a large extent clonal propagation of Ranunculus asiaticus L. through axillary bud stimulation. In preliminary experiments we identified three agar brands (Oxoid=OX, Merck=MK, and Roth=RT) which affect the availability of water and minerals to tissues in different ways. In the present study we investigate the influence of these agars on the in vitro performance of Ranunculus. On OX and MK gels, growth was satisfactory, although the former had a more promotive effect on fresh and dry weight production and on multiplication rate. Growth and development of shoots were poor on RT; shoot clumps showed symptoms of hyperhydricity, with shoots having large dark-green malformed leaves and very elongated petioles. Epidermal strips of leaves from shoots grown on the different gels and collected at the end of the culture period revealed differences according to the agar brand on which the plantlets were cultured. Severe structural deformations of stomata could be detected on RT-grown shoots. The analyses of the sugar content of the gel at the end of the culture period demonstrated that the explants grown on RT gels are strictly dependent on the carbohydrates in the medium. On OX and MK gels the heterotrophic metabolism was lowered compared to RT-grown explants. The agar brand on which plantlets were grown also influenced water retention capacity and water content of the shoots. Experiments with tritiated water were undertaken to better understand the water fluxes inside the vessel and to investigate the difference in “pump function” exerted by shoots cultured on the three gels. Shoots grown on OX media showed the best “pump function,” which would account for the better results obtained on this gel. On the basis of the relationship between gel properties and the growth of Ranunculus shoots, we conclude that the different physiological responses on the three gels are a reflection of different water and nutrient availability in the different media.  相似文献   

12.
Seedlings and coppice shoots of Betula pubescens Ehrh. were grown under controlled conditions designed to simulate the annual growth cycle, and a water stress was introduced during the short day (SD). Alleviation of hud dormancy after increasing periods at chilling temperatures was tested under long day (LD) conditions. Abscisic acid (ABA) was analysed in leaf and bud samples by gas chromatography-mass spectrometry using [2H4]ABA as the internal standard. Elongation growth of coppice shoots was faster than that of seedlings under both LD and SD conditions, while the final growth cessation occurred in a similar manner and was not affected by water stress, which significantly reduced growth rate in both plant types. Bud dormancy gradually decreased with increasing length of chilling, starting from the basal parts of the plant axis. Water stress did not retard hudhurst. but rather improved it in the chilled coppice shoots and in the non-chilled and partially chilled seedlings. Water content of buds was higher in coppice shoots than in seedlings, but after exposure to SD. it gradually decreased to 45% in both plant types and was not affected by water stress or chilling. The ABA level in both leaves and buds increased during SD treatment and was" enhanced by water stress. No clear differences in bud ABA level were found between the seedlings and coppice shoots under SD conditions, although coppice shoots had less ABA during the preceding LD conditions. There was, in general, no clear effect of chilling on bud ABA level. Budbursl in chilled, single-node cuttings was inhibited by external ABA treatment, which raised the internal ABA levels 10 to 150 times above normal. The observed correlation between ABA level and water content in buds during induction of dormancy under SD and water stress conditions indicates a possible role for ABA in the regulation of dormancy.  相似文献   

13.
Adventitious shoots were regenerated from axillary bud explantsof 15 carnation cultivars. The use of leaf and stem explantswas not successful, largely due to explant senescence in thepresence of benzyladenine, kinetin and, to a lesser extent,zeatin. For axillary bud explants, a suitable optimum adventitiousregeneration medium contained Murashige and Skoog basal mediumsolidified with Gelrite and supplemented with 15 µm benzyladenineand 0.5 µM a-napthaleneacetic acid. Adventitious primordiaarose from the cut basal end of bud explants erupting as individualshoots after 2–3 weeks incubation. The axillary bud sizeand the time between subcultures of source material influencedthe production of adventitious shoots. Transfer of regeneratedshoots onto a medium solidified with agar minimized visiblesigns of vitrification. Regenerated shoots could be easily rooted,transferred to glasshouse conditions and grown to flowering. Vitrification, tissue culture, cut flowers, Dianthus caryophyllus L., carnation, cytokinins, explant  相似文献   

14.
Vitrified shoots regenerated from carnation petals (Dianthus caryophyllus L. cv. Scania) were recovered by culturing them in a medium containing 3.0 g/l Bacto-Peptone. Wax structures not found on vitrified shoots developed on the abaxial surface of leaves of recovered shoots and on those of normal leaves. Recovered shoots were rooted and successfully acclimatized while vitrified shoots could not survive the acclimatization process. The Bacto-Peptone solution was fractionated and the efficiency of each fraction for the recovery of vitrification was examined. Only basic, non high molecular fractions whose molecular weight was less than 10,000 were effective.  相似文献   

15.

The aim of the current study was to compare the effects of the culture method—conventional solid medium culture and temporary immersion system (TIS)—on the growth and development of carnation ‘Dreambyul’ plantlets. At the same time, different immersion intervals and immersion durations of TIS culture were also tested to find the optimal setting for mass production of high-quality carnation plantlets in vitro. In the first experiment, the results showed that the shoot length, root length, and number of nodes of plantlets cultured in the TIS were highest when the immersion interval was 8 h. Compared with that of plantlets cultured in the conventional solid medium culture, the fresh weight of plantlets cultured in the TIS was at least 3 times greater. The greatest total chlorophyll content, stomata with normal shapes was observed for plantlets grown in the TIS with an 8-h immersion interval. The lowest H2O2 level was recorded in plantlets cultured with the 8-h immersion interval. In the second study, growth traits such as the shoot length, root length, and stem diameter, as well as the number of shoots and roots tended to increase with immersion durations, and reached their peaks when the immersion duration was 90 s. Excessive water accumulation in tissues and a higher incidence of hyperhydricity were observed in plantlets where the immersion duration was 120 and 150 s. These findings suggest that an immersion interval of 8 h, combined with an immersion duration of 90 s, could be the optimal setting for growth and development of carnation ‘Dreambyul’ plantlets cultured in the TIS.

  相似文献   

16.
The biomechanical role of septate nodes (points of leaf attachment with transverse diaphragms of tissue) in the otherwise hollow aerial stems of Equisetum hyemale L. is examined by means of multiple resonance frequency spectra. Resonance frequencies were determined for intact shoots, as well as the same shoots through which metal needles were inserted to destroy septa at nodes. The elastic modulus (E) of shoots, before and after surgical manipulation, was calculated. Shoots with perforated septa had E values from 17 to 32% less than intact shoots. During winter months with subfreezing temperatures, shoots with intact nodal septa accumulated water (in the form of ice) in their internodal pith canals. Values of E calculated for a shoot with intact septa and internodal water, and for the same shoot without septa do not differ significantly. Calculations indicate that the mass of internodal water is a significant fraction of the mass sufficient to deflect and buckle shoots. The added mass of internodal water is sufficient to mask the actual elastic modulus of shoots. The data indicate that nodes with septa significantly influence the flexural rigidity of shoots, but that this influence changes as a function of the quantity of water found in pith cavities.  相似文献   

17.
Effects of Potato leafroll virus (PLRV) and Potato virus Y (PVY) on vegetative growth, physiological metabolism and microtuber production were investigated using in vitro shoot cultures. The results showed that parameters of shoot growth including bud break percentage, shoot length, and node number and length were markedly reduced in the diseased shoots. These negative effects were much more pronounced in shoots co-infected with PLRV and PVY than in those singly infected with either PLRV or PVY. The inhibitive effects on root developments measured by root number and length were observed only in shoots co-infected with PLRV and PVY. Significantly lower contents of chl-a, chl-b and total chl were found in virus infected shoots than in healthy ones. There were striking differences in contents of total soluble protein observed between healthy shoots and PLVR and PVY co-infected ones. The content of total soluble sugar was highest in shoots co-infected with PLRV and PVY, and lowest in healthy shoots. Furthermore, there were no significant differences found in the level of endogenous indole-acetic acid among healthy shoots verses virus infected shoots. However, the level of zeatin-ribosome was much higher in healthy shoots than in virus infected ones. Yet, both healthy and single PLRV infected shoots produced similar levels of gibberillic acid 3, which were much higher than those of PVY single-infected shoots and PLRV and PVY co-infected shoots. Also, there were no significant differences in the number of microtubers among healthy shoots, PLVR single or PVY single infected shoots, but shoots co-infected with PLRV and PVY produced the lowest number of microtubers. Overall, the healthy shoots produced the largest size of microtubers and the highest percentage of microtubers ≥5 mm in diameter.  相似文献   

18.
Carnation plantlets (Dianthus caryophyllus L.) cultured in vitro often develop morphological and physiological anomalies, a phenomenon called hyperhydricity, which impairs their survival ex vitro. When the agar concentration of the growth medium was increased (from 0 to 12 g dm−3), thereby reducing water availability, the hyperhydricity of those adventitious shoots regenerated from carnation petals decreased. This was accompanied by a progressive fall in the water content of shoots (94.9 to 91.4 %), fresh mass (from 57.2 to 1.8 mg), number of leaf parenchyma cell layers (from 9.3 to 7.7), and the size of these cells (from 968 to 254 μm2). However, the number of regenerated shoots also decreased (17.7 in 2 g dm−3 agar to 4.3 in 12 g dm−3). Similarly, in ventilated tubes, which exhibit a lower relative humidity than tightly closed tubes, shoot organogenesis diminished up to 28 %, in tandem with shoot water content. Thus, relative humidity and water availability in culture vessels do not only influence shoot hyperhydricity in carnations, but also greatly affect adventitious shoot organogenesis.  相似文献   

19.
Summary Callus regenerated near the base of senescing petals of flower bud explants of German Red carnation (Dianthus caryophyllus L.) produced adventitious flowering microshoots on MS-medium containing benzylaminopurine (8.9 M) and naphthaleneacetic acid (2.7 M). When these microshoots were subcultured with some callus, additional adventitious flowering microshoots were produced from the callus. The production of adventitious flowering shoots continued for many subcultures spanning a period of more than two years. Uniconazole (6.9 M) increased the number of adventitious shoots formed by as much as two-fold but decreased shoot length by about 50%. In contrast, GA3 (2.9 M) decreased adventitious shoot formation and increased shoot length. Regardless of the growth regulator treatment, virtually all of the adventitious shoots produced flower buds. Thus, the growth regulators influenced flowering only indirectly by altering the number of adventitious shoots produced in vitro. These results demonstrate that the flowering habit of the adventitious shoots of German Red carnation is highly persistent and the flowering stimulus continues to be transmitted to the newly formed microshoots through the callus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号