首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have developed an efficient method for transformation and regeneration of plants from carnation,Dianthus caryophyllus L. Whole leaves fromin vitro shoot cultures were mixed withAgrobacterium, cocultivated for 5 days and then plated on 2 µg/l chlorsulfuron (CS). Regenerated shoots and shoot clusters were divided into smaller sections and plated on 3 µg/l CS for selection to produce fully transformed shoots. Geneticin (G418) and kanamycin used were not as effective selective agents as CS. All regenerated shoots were vitrified. These were normalized, rooted and transferred to the greenhouse. 100% of regenerated plants were transformed based on rooting assay, GUS assay, PCR and Southern analysis.  相似文献   

2.
An axillary proliferating clone of Prunus avium L. was subcul- tured every four weeks on solid MS medium with agar as the gelling agent. Vitrification (hyperhydricity) of shoots was induced in one four week cycle with the same medium except that agar was replaced by gel- rite. During culture on the vitrifying medium, the water content of the shoots progressively increased with a parallel decrease in chlorophyll content. Cytological differences between the leaves and stems of the vitrified and normal shoots were detected by light and electron (both transmission and scanning) microscopy. Leaves of vitrified shoots were characterized by lower number of chloroplasts in the palisade parenchyma and by a defective cuticle. The stems of vitrified shoots had a less developed and lignified xylem tissue, lacked sclerenchy- matic areas and showed hypertrophy of the cortical parenchyma. More intense vacuolar activity with evagina- tions of the chloroplast envelope into the vacuole was noted in cells of vitrified leaves.  相似文献   

3.
Agave tequilana stem explants were used to produce adventitious shoots under a set of different water potentials induced by different concentrations of gelrite in the medium. At high water potentials all shoots were vitrified; as the medium water potential became more negative the degree of vitrification decreased but the number of shoots per explant also diminished. The enzymes NADH and NAD-GDH (EC. 1.4.1.2) were measured along the water potential gradient. GDH activity was high in the non-vitrified tissues and decreased significantly in the vitrified ones.Abbreviations GDH glutamate dehydrogenase - MS Murashige and Skoog medium - MSO methionine sulfoximine - PVP polyvinylpolypyrrolidone - GS glutamine synthetase - GOGAT glutamine: oxoglutarate amino transferase  相似文献   

4.
The fine-scale spatial distribution of leaves and shoots of Brachypodium pinnatum and Carex flacca, two rhizomatous graminoids, was investigated in two chalk grasslands in South Limburg (The Netherlands). The objective was to examine whether leaves and shoots of Brachypodium, a dominant species, had a regular distribution on a small scale, as has been suggested for other clonal species that form high-density stands. Patterns were compared to Carex, which is never found to be as abundant as Brachypodium.The number of shoots and leaf contacts were counted in small quadrats, grouped in a grid. Using Moran's I analysis for autocorrelation, it appeared that leaves and shoots of both species were arranged in clumps, and that these clumps were randomly distributed across the soil surface. Shoot clumps in Carex were smaller in diameter and not as pronounced as those in Brachypodium.In most cases, patterns of leaves and shoots were positively correlated, indicating that leaves were predominantly positioned above and around the groups of quadrats where the shoots were attached. However, in dense stands of Brachypodium the positions of leaf clumps were not correlated to those of shoot clumps. This is a result of the tall growth form of this species and its high shoot densities, and it is suggested that this will be a characteristic of any species that dominates a dense stand.  相似文献   

5.
Summary Vitrification of plants in vitro is a physiological abnormality of tissue-cultured plants which causes significant losses in the micropropagation industry. Vitrified plants are waterlogged but the position of water within plants has not been identified. Nuclear magnetic resonance (NMR) imaging of normal tissue-cultured, vitrified tissue-cultured, and glasshouse-grown leaves ofGypsophila paniculata showed the distribution of water within the leaves. Normal tissue-cultured and glasshouse-grown leaves had a high concentration of water within leaf vascular bundles and lower concentrations elsewhere. In contrast, vitrified leaves had a relatively even distribution of high water concentration throughout the leaves. When imaging parameters were changed, so that only water associated with cell membranes was shown, the images of normal tissue-cultured and glasshouse-grown leaves did not change. However, the image of the vitrified leaves showed a general lowering of intensity across the whole of the leaf. The appearance of the NMR images, together with those obtained by light microscopy, suggest that the excess water associated with vitrified plants is located in the intercellular air spaces. The blockage of these spaces may lead to a cycle of perturbations in the plant's physiology culminating in the development of vitrification.Abbreviation NMR nuclear magnetic resonance  相似文献   

6.
Vitrification is a morphological and physiological disorder affecting in vitro regenerated plants. Vitrified shoots of carnation (Dianthus caryophyllus L.) regenerated from cultured cotyledons were abnormally glassy, thick and bushy with wider translucent leaves. Such vitrified shoots were recovered by culturing them on a medium supplemented with GA3. Differentiation of shoot buds from the cultured cotyledons of D. caryophyllus occurred on MS medium supplemented with BAP (2.0 mg/l). Shoot buds subcultured on the same medium resulted in further prolific development of shoot buds and bushy shoot growths. Key words: carnation, shoot morphogenesis, micropropagation, cotyledons vitrification.  相似文献   

7.
To clarify mortality patterns of current-year shoots within the crown of Betula maximowicziana Regel after severe insect herbivory in central Hokkaido, northern Japan, we investigated the degree of defoliation, pattern of shoot development, shoot mortality, and leaf tissue-water relations. One hundred current-year long shoots growing in a B. maximowicziana plantation were observed for defoliation and mortality in June 2002. An outbreak of herbivorous insects (Caligula japonica and Lymantria dispar praeterea) occurred in the stand in mid-to-late June, and the monitored shoots were defoliated to various degrees. Within 1 month of defoliation, some of the severely defoliated shoots had produced new leaves on short shoots that had emerged from axillary buds. Stepwise logistic regression revealed that the probability that current-year long shoots would put out axillary short shoots with leaves is closely related to the degree of defoliation. To evaluate the water relations of the leaves, we determined pressure–volume curves for the leaves that survived the herbivorous insect outbreak and the new leaves that emerged after defoliation. The water potential at turgor loss (Ψl,tlp) and the osmotic potential at full turgidity (Ψπ,sat) were higher for the new leaves than for the surviving leaves, indicating a lower ability to maintain leaf cell turgor against leaf dehydration in the new leaves. Of the 100 shoots, 13 died after the emergence of new leaves. Stepwise logistic regression revealed that the probability that the long shoots would die generally increased with the emergence of new leaves, with increasing shoot height. This result suggests that the combined effect of the vulnerability of newly emerged leaves and low water availability, associated with higher shoot positions within the crown, caused shoot mortality. Based on our results, some possible mechanisms for mortality in severely defoliated B. maximowicziana are discussed.  相似文献   

8.
In this survey plastic responses to light intensity and planting density were examined in three Lamium species (L. purpureum, L. album and L. maculatum). Low light intensity enhanced plant height, length and width of leaves, but reduced number of shoots and leaves, as well as root and shoot weights. Higher density resulted in smaller plants and leaves, but had significant effect on module number (shoots and leaves) only on older plants. The effect of light intensity on measured traits was greater than the effect of density, and consistent with predictions about plastic responses on light intensity variation. Generally, the three Lamium species differed in the magnitude but not in patterns of plasticity. However, associations of analyzed traits with fitness significantly differed among species as well as among light treatments.  相似文献   

9.
Summary Development of an efficient transformation method for recalcitrant crops such as sugar beet (Beta vulgaris L.) depends on identification of germplasm with relatively high regeneration potential. Individual plants of seven sugar beet breeding lines were screened for their ability to form adventitious shoots on leaf disk callus. Disks were excised from the first pair of true leaves of 3-wk-old seedlings or from partially expanded leaves of 8-mo.-old plants and cultured on medium with 4.4 μM 6-benzylaminopurine for 10 wk. At 5 wk of culture, friable calluses and adventitious shoots began to develop. Rates of callus and shoot formation varied between breeding lines and between individual plants of the same line. Line FC607 exhibited the highest percentage (61%) of plants that regenerated shoots on explants. Among the plants with a positive shoot regeneration response, line FC607 also had the highest mean number (8.3±1.1) of shoots per explant. Individual plants within each line exhibited a wide range of percentages of explants that regenerated shoots. A similar variation was observed in the number of shoots that regenerated per explant of an individual plant. No loss of regeneration potential was observed on selected plants maintained in the greenhouse for 3 yr. Regenerated plants exhibited normal phenotypes and regeneration abilities comparable to the respective source plants. Based on our results, it is imperative to screen a large number of individual plants within sugar beet breeding lines in order to identify the high regenerators for use in molecular breeding and improvement programs.  相似文献   

10.
Summary We measured the effects ofEriophyes laevis mite galls on the relative growth of short shoot leaf area ofAlnus glutinosa. A portion of leaves was artificially removed from a set of short shoots with both high and low gall density to cause local stress conditions. Nontreated high and low gall density short shoots were used as controls. The results show that the relative growth of leaf area measured for short shoots is negatively affected by high gall density. Artificial leaf removal, on the other hand, had positive effects on leaf area growth. Interestingly, the growth of leaf area did not differ for high gall density short shoots with leaf removal and noninfested short shoots with no leaf removal. This result may be caused by the combined, opposite effects of leaf removal and gall infestation.  相似文献   

11.
The growth in the sapling stage and participation of reserve materials in the formation of annual new shoots were studied in the evergreen treeQuercus glauca. The growth and some allometric relationship were analyzed for 1-to 4-year-oldQ. glauca plants. Each individual was felled at the foot, or all the leaves were removed at the end of the growth season (December). Sprouts were formed on the remaining stump and new shoots were formed from winter buds under dark or light conditions. The dry weight of each plant part was measured before and afte,, the formation of these new shoots. The amount of reserve materials in each plant part was estimated from the difference in allometric relatationships before and after the formation of new shoots. Although the results showed that a small amount of reserve material existed in roots, the participation of reserve materials in the formation of annual new shoots was negligible inQ. glauca growing under usual conditions, and substrates for the formation of new shoots were derived from the products of photosynthesis in old leaves and developing new leaves. Some of the growth characteristics ofQ. glauca were compared with those of the deciduous speciesQuercus variabilis to explain ecological behavior of the two species in warmtemperate secondary forests.  相似文献   

12.
An efficient system to regenerate shoots on excised leaves of greenhouse-grown wild lowbush blueberry (Vaccinium angustifolium Ait.) was developed in vitro. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, medial, and basal segments of the leaves was tested. Leaf cultures produced multiple buds and shoots with or without an intermediary callus phase on 2.3–4.5 μM TDZ within 6 wk of culture initiation. The greatest shoot regeneration came from young expanding basal leaf segments positioned with the adaxial side touching the culture medium and maintained for 2 wk in darkness. Callus development and shoot regeneration depended not only on the polarity of the explants but also on the genotype of the clone that supplied the explant material. TDZ-initiated cultures were transferred to medium containing 2.3–4.6 μM zeatin and produced usable shoots after one additional subculture. Elongated shoots were dipped in 39.4 mM indole-3-butyric acid powder and planted on a peat:perlite soilless medium at a ratio of 3:2 (v/v), which yielded an 80–90% rooting efficiency. The plantlets were acclimatized and eventually established in the greenhouse with 75–85% survival.  相似文献   

13.
Summary Successful shoot regeneration from petioles, leaves, and petioles with leaves cultured in vitro is reported in Heuchera sanguinea. Petioles or petioles with leaves regenerated more shoots than leaves alone. For culture, the optimum hormonal concentrations were 0.19 μM α-naphthaleneacetic acid combined with 0.44 or 4.4 μM benzyladenine in Murashige and Skoog-based (MS) medium: the regenerating rate and the number of shoots per explant were 60% and 8.6–9.7, respectively. Histological study on petiole culture showed dividing cell clusters including vascular tissues after 1 wk, callus including several dividing cell clusters at the periphery after 3 wk and then apical meristems with immature leaves after 5 wk. Rooting from the regenerated shoots was highest (95%) on MS medium containing 4.9 μM indole-3-butyric acid. Seventy-three percent of rooted plants were successfully acclimatized in pots. When they were cultured in the field, the plants grew and most flowered the following year over winter.  相似文献   

14.
We studied the relationship between variation in age and shoot characteristics of the host plant Salix exigua Nuttall (coyote or sandbar willow) and the attack and survival of Euura sp. (an unnamed leaf-midrib galling sawfly). Variation in shoot characteristics resulted from reduced growth as willow ramets aged. Mean shoot length per ramet and mean longest leaf length per shoot decreased by 95% and 50% respectively between 1- and 9-year-old willow ramets. All measured shoot characteristics-shoot length, longest leaf length, number of leaves per shoot, and mean internode length-were significantly negatively correlated with ramet age (r 2 ranged from –0.23 to –0.41). Correlations between shoot characteristics were highly positive, indicating that plants also grew in a strongly integrated fashion (r 2 ranged from 0.54 to 0.85). Four hypotheses were examined to explain sawfly attack patterns. The host-plant hypothesis was supported in explaining enhanced larval sawfly survival through reduced plant resistance. As willow ramets aged, the probability of Euura sp. attack decreased over 10-fold, from 0.315 on 1-year-old ramets to 0.024 on 2- to 9-year-old ramets. As shoot length increased, the probability of sawfly attack increased over 100-fold, from 0.007 on shoots <100 mm, to 0.800 on shoots in the 1001–1100 mm shoot length class. These attack patterns occurred even though 1-year-old ramets and shoots >500 mm each represented less than 2% of the total shoots available for oviposition. Host plant induced mortality of the egg/early instar stage decreased by 50% on longer leaves and was the most important factor determining survival differences between vigorous and non-vigorous hosts. Sawfly attack was not determined by the resource distribution hypothesis. Although shoots <200 mm contained 82% of the total leaves available, they contained only 43% of the galls initiated. The attack pattern also was not explained by the gall volume hypothesis. Although gall volume increased on longer shoots, there was no significant variation in mid or late instar mortality over shoot length, as would be expected if food resources within smaller galls were limited. The natural enemy attack hypothesis could not explain the pattern of oviposition since predation was greater on longer shoots and leaves. In addition, larval survival was related to oviposition behavior. Due to a 69% reduction in late instar death and an 83% reduction in parasitism, survival of progeny in galls initiated close to the petiole base was 2.8 times greater than in galls initiated near the leaf tip. A 75% reduction in gall volume over this range of gall positions may account for the observed increases in late instar mortality and parasitism.  相似文献   

15.
In Posidonia oceanica (L.) Delile, anthesis induces a decrease in the number of juvenile leaves resulting in a significant reduction in the number of leaves on the flowering shoots. All the leaves of the flowering shoots are narrower than the leaves of nonflowering shoots. A modification of the leaf growth also appears in flowering shoots: the oldest leaves are longer and the leaves induced during or after anthesis are shorter. At 10 m depth, in the Bay of Calvi, anthesis lasts roughly 3 months and the flowering is induced 7 months before anthesis.  相似文献   

16.
We investigated the in vitro propagation by axillary budding of different cultivars of tree peonies, selected for cut flower production under Mediterranean conditions. Buds with expanded leaves were better to initiate cultures than just emerged ones (64%compared to 43%). The aptitude for micropropagation was genotype-dependent, and the propagation ratio ranged between 2 and 5 per cycle. Tendency to necrosis and/or hyperhydricity were also genotype dependent. Indole-3-butyric acid improved rooting but was not really necessary provided the shoots were pre-treated at 2 °C for 7days. Plantlets were successfully acclimatized under in vitro conditions. Adventitious propagation was achieved using filaments and petals as explants. They first developed callus, able to regenerate shoots after 8 weeks on media supplemented with thidiazuron.  相似文献   

17.
Phyllotaxis and vascular course in the vegetative shoots ofRubia akane andR. sikkimensis were studied. Each node of both species has a whorl of four leafy members among which two are true leaves. Arrangement of the true leaves is not decussate but bijugate, i.e., opposite leaves are arranged spirally. Bijugy was ascertained not only by gross morphology but also by arrangement of primordia around the shoot apex and vascular course through several internodes. Divergence angle differed widely with internodes even within a single shoot and with shoots even in the internodes which are separated by a same number of nodes from the apex. Mean divergence angles obtained for five youngest internodes of some shoots were between 49.4° and 61.8° inR. akane and between 53.6° and 59.4° inR. sikkimensis. Young seedlings ofR. akane showed decussate phyllotaxis in the lowermost several internodes. In the internodes near the lower end of the bijugate part, the divergence angle was wider than in the upper internodes. The directions of the phyllotactic spirals in the main axis and the lateral branches were either homodromous or antidromous, and those in the oppositely paired branches also were either homo- or antidromous.  相似文献   

18.
Long-distance signals generated in shoots are thought to be associated with the regulation of iron uptake from roots; however, the signaling mechanism is still unknown. To elucidate whether the signal regulates iron uptake genes in roots positively or negatively, we analyzed the expressions of two representative iron uptake genes: NtIRT1 and NtFRO1 in tobacco (Nicotiana tabacum L.) roots, after shoots were manipulated in vitro. When iron-deficient leaves were treated with Fe(II)-EDTA, the expressions of both genes were significantly reduced; nevertheless iron concentration in the roots maintained a similar level to that in roots grown under iron-deficient conditions. Next, all leaves from tobacco plants grown under the iron-deficient condition were excised. The expression of two genes were quickly reduced below half within 2 h after the leaf excision and gradually disappeared by the end of a 24-h period. The NtIRT1 expression was compared among the plants whose leaves were cut off in various patterns. The expression increased in proportion to the dry weight of iron-deficient leaves, although no relation was observed between the gene expression and the position of excised leaves. Interestingly, the NtIRT1 expression in hairy roots increased under the iron-deficient condition, suggesting that roots also have the signaling mechanism of iron status as well as shoots. Taken together, these results indicate that the long-distance signal generated in iron-deficient tissues including roots is a major factor in positive regulation of the expression of NtIRT1 and NtFRO1 in roots, and that the strength of the signal depends on the size of plants.  相似文献   

19.
Summary Adults of Phytomyza ilicicola (Diptera: Agromyzidae), a univoltine specialist leafminer, emerge in close synchrony with leaf flush of American holly and feed on and oviposit in soft, partially expanded leaves. Early spring defoliation, such as commonly results from freezing injury to young shoots, is followed several weeks later by a second flush of young leaves from lateral buds. We simulated this phenomenon by manually defoliating whole small trees and individual shoots of large trees to test the hypothesis that freezing injury can encourage leafminer outbreaks by inducing an abundance of soft, protein rich young leaves late in the adult activity period, when availability of vulnerable leaves becomes limited. Defoliation of small trees one or two weeks after bud break resulted in six- to 13-fold increases in the incidence of feeding punctures and larval mines on second flush leaves as compared with densities on original young leaves of control trees. Similarly, we induced significant increases in feeding punctures and larval mines on second flush leaves of individual defoliated shoots, although leaves that did not open until after the flight period escaped this injury. These observations underscore the capability of adult female P. ilicicola to locate and exploit a small number of phenologically available leaves among many hundreds of older leaves on the same tree. By altering the phenology of leaf flush, certain kinds of environmental stress may predispose perennial plants to outbreaks of early season folivores that restrict their feeding or oviposition to very young leaves.  相似文献   

20.
Summary Growth of the broad-leaved graminoid Milium effusum, occurring in shady deciduous forests, was matched with periods of high light influx through the tree canopy in spring and autumn. Fertile shoots grew faster than sterile shoots. Leaves on flowering shoots were fully developed when the budbreak started on the trees, whereas nonflowering shoots had fully developed leaves when the tree canopy closed. Leaf concentrations of N and P were high (6.1 and 0.74% respectively) in spring but decreased as the leaves expanded. Maximum pool sizes of N and P in whole tillers were reached about one month after the onset of spring growth, whereas maximum spring pools of K, Mg, and Ca were timed with peak biomass about one month later. The leaves lost nutrients during summer when no growth took place. Since leaching losses were negligible, nutrients were probably allocated from the leaves to support root growth. Autumn reallocation to winter stores was low. The pattern of growth and nutrient use suggests that light availability, i.e., the resource in relatively lowest supply, regulates the investment of the resource in highest supply, i.e., nutrients. This is consistent with previously reported observations on Eriophorum vaginatum, a graminoid of low nutrient — high light environments. This species utilizes nutrients efficiently at the expense of less efficient acquisition of carbon. We suggest that selection for efficient utilization of the resource in lowest relative supply has been a strong driving force behind the physiological adaptation of both species to their environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号