首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice lesion mimic mutants with enhanced resistance to diseases   总被引:3,自引:0,他引:3  
Lesion mimic mutants are characterized by the formation of necrotic lesions in the absence of pathogens. Such genetic defects often result in enhanced resistance to pathogen infection and constitutive expression of defense response genes. To understand the genetic mechanisms leading to these mutations, we characterized 21 lesion mimic mutants isolated from IR64 rice mutant populations produced by mutagenesis with diepoxybutane (D), gamma rays (G), and fast neutrons (F). Four mutations are controlled by single dominant genes, one of which is inherited maternally. Five lesion mimics are allelic to known spotted leaf (spl) mutants spl1, spl2, spl3, or spl6. In total, 11 new lesion mimic mutations, named spl16, spl17, and spl19 through Spl27, were established based on allelism tests. Two lesion mimics, spl17 and Spl26 showed enhanced resistance to multiple strains of Magnaporthe oryzae, the rice blast pathogen, and Xanthomonas oryzae pv. oryzae, the bacterial blight (BB) pathogen. Co-segregation analyses of blast and BB resistance and lesion mimic phenotypes in segregating populations of spl17 and Spl26 indicate that enhanced resistance to the two diseases is conferred by mutations in the lesion mimic genes. A double mutant produced from two independent lesion mimics showed more severe lesions and higher level of resistance to X. o. pv. oryzae than their single mutant parents indicating a synergistic effect of the two mutations. In mutants that exhibit enhanced disease resistance to both pathogens, increases in expression of defense response genes PR-10a, POX22.3, and PO-C1 were correlated with lesion mimic development and enhancement of resistance. These lesion mimic mutants may provide essential materials for a comprehensive dissection of the disease resistance pathways in rice.  相似文献   

2.
The rice lesion mimic mutant spotted leaf 1 ( spl1) was first identified in the rice ( Oryza sativa) cultivar Asahi in 1965. This mutant displayed spontaneous disease-like lesions in the absence of any pathogen, and was found to confer resistance to multiple isolates of rice blast. We employed a map-based cloning strategy to localize the Spl1 gene. A total of ten cleaved amplified polymorphic sequence (CAPS) markers linked to the Spl1 gene were identified and mapped to an 8.5-cM region on chromosome 12. A high-resolution genetic map was developed using these ten CAPS markers and a segregating population consisting of 3202 individuals. A BAC contig containing four BAC clones was constructed, and Spl1 was localized to a 423-kb region. Seven spl1 mutants were obtained from the IR64 deletion mutant collection, and molecular analysis using these mutants delimited the Spl1 gene to a 70-kb interval, covered by two BAC clones. These results provide the basis for cloning this gene, which is involved in cell death and disease resistance in rice.Communicated by R. HagemannThe first two authors contributed equally to the work  相似文献   

3.
4.
Lesion mimic mutant(LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5,which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae(Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A(e EF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indicaspecific manner, respectively. In addition, high-throughput m RNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous e EF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.  相似文献   

5.
6.
Many plant mutants develop spontaneous lesions that resemble disease symptoms in the absence of pathogen attack. In several pathosystems, lesion mimic mutations have been shown to be involved in programmed cell death, which in some instances leads to enhanced disease resistance to multiple pathogens. We investigated the relationship between spontaneous cell death and disease resistance in rice with nine mutants with a range of lesion mimic phenotypes. All nine mutations are controlled by recessive genes and some of these mutants have stunted growth and other abnormal characteristics. The lesion mimics that appeared on the leaves of these mutants were caused by cell death as measured by trypan blue staining. Activation of six defense-related genes was observed in most of the mutants when the mimic lesions developed. Four mutants exhibited significant enhanced resistance to rice blast. One of the mutants, spl11, confers non-race-specific resistance not only to blast but also to bacterial blight. The level of resistance in the spl11 mutant to the two pathogens correlates with the defense-related gene expression and lesion development on the leaves. The results suggest that some lesion mimic mutations in rice may be involved in disease resistance, and cloning of these genes may provide a clue to developing broad-spectrum resistance to diverse pathogens.  相似文献   

7.
Bacterial blight caused by Xanthomonas oryzae pv oryzae is a devastating disease in rice worldwide. The resistance gene Xa4 has been widely used in breeding programs and played an important role in protecting rice from this disease. Using 642 highly susceptible individuals and a random sample of 255 individuals from an F(2) population developed from a cross between IRBB4 and IR24, the Xa4 gene was genetically mapped to a region less than 1 cM. A contig map was constructed for the Xa4 region consisting of six non-redundant bacterial artificial chromosome (BAC) clones and spanning approximately 500 kb in length. Analysis of recombination events in the Xa4 region located the gene locus to one BAC, 3H8. Assay of the recombinants using the subclones of 3H8 in combination with sequence analysis further narrowed the Xa4 locus down to a 47-kb fragment.  相似文献   

8.
Bacterial leaf blight caused by the bacterial pathogen Xanthomonas oryzae pv oryzae (Xoo) limits rice yield in all major rice-growing regions of the world, especially in irrigated lowland and rainfed conditions where predisposition factors favor disease development to epidemic proportions. Since bacterial pathogens are difficult to manage, development of host plant resistance is the most effective means of disease management. As many as 24 major genes conferring resistance to various races of the pathogen have been identified and utilized in rice breeding programs. However, large-scale and long-term cultivation of varieties carrying a single gene for resistance resulted in a significant shift in pathogen race frequency with consequent breakdown of resistance in these cultivars. To combat the problem of resistance breakdown, pyramiding of resistance genes into different cultivars is being carried out. Pyramiding of resistance genes is now possible with molecular markers that are developed for individual genes. This review discusses the various bacterial blight resistance genes identified and their corresponding molecular markers developed for breeding durable resistance into modern rice cultivars.  相似文献   

9.
药用野生稻转育后代一个抗白叶枯病新基因的定位   总被引:31,自引:0,他引:31  
从药用野生稻渗入后代选育的水稻株系B5表现为高抗褐飞虱、白背飞虱和白叶枯病。对B5与籼稻品种明恢63杂交组合的187个重组自交系(RILs)进行了抗白叶枯病接种鉴定,采用分离集团分析法(Bulked Segregant Analysis,BSA),在第1染色体上筛选到与水稻抗白叶枯病基因相连锁RFLP分子标记。利用RILs抗病性表现型鉴定资料和构建的分子标记连锁图谱,将抗白叶枯病基因定位在第1染色体短臂的C904和R596之间,这两个分子标记间遗传距离为1.3cM。该基因对RILs群体抗病性变异的贡献率为52.96%,是一效应值较大的主效基因。这一抗白叶枯病基因不同于已报道的抗白叶枯病基因的位点,因此将其命名为Xa29(t)。  相似文献   

10.
水稻类病斑突变体的生理与遗传分析   总被引:8,自引:0,他引:8  
从全基因组水平上筛选获得了10个籼稻和8个粳稻类病斑(lesion resembling disease,lrd27-44)突变体.从突变体性状受环境影响敏感程度可以分为环境钝感型和环境敏感型.从发育进程可以分为全生育期类病斑型,营养生长阶段起始类病斑型和生殖生长阶段起始类病斑型.病斑的光诱导表明病斑由受光信号激发的程序性细胞死亡引起,而不受损伤诱导.对其中4个突变体lrd32,lrd39,lrd40和lrd42的遗传分析结果表明,这些类病斑性状由1或2对隐性基因控制.两个突变体lrd37和lrd40表现出对白叶枯病菌的广谱抗病性,有关基因定位克隆正在进行中.  相似文献   

11.
Fine physical mapping of the rice stripe resistance gene locus, Stvb-i   总被引:8,自引:0,他引:8  
The Stvb-i gene confers stripe disease resistance to rice. For positional cloning, we constructed a physical map spanning 1.8-cM distance between flanking markers, consisting of 18 bacterial artificial chromosome (BAC) clones, around the Stvb-i locus on rice chromosome 11. The 18 clones were isolated by screening a BAC library derived from a japonica cultivar, Shimokita, with three Stvb-i-linked RFLP markers and DraI-digested DNAs of a yeast artificial chromosome (YAC) clone. The results of Southern hybridization and restriction enzyme analyses indicated that these BAC clones are contiguous and cover about a 700-kb region containing the Stvb-i allele. Utilizing end and internal fragments of the BAC insert DNAs, 33 molecular markers were generated within a small chromosomal region including the Stvb-i locus. Genotyping analysis with these markers for a resistant cultivar and four nearby recombinants selected from 120 F2 individuals indicated that Stvb-i is contained within an approximately 286-kb region covered with two overlapping BAC clones. Received: 25 August 1999 / Accepted: 16 November 1999  相似文献   

12.
1996~1999年,在不同纬度、不同海拔和不同稻作生态类型的重病区设立5个持久抗性稻瘟病鉴定圃.试验材料为云南的74份地方稻种资源,其中粳稻56份,籼稻18份(含野生稻3份).通过多个抗性组分进行了系统研究,初步表明大白谷(粳、墨江县)、毫弄早(籼、勐海县)、毫玉浪(籼、勐海县)、疣粒野生稻(野、西双版纳自治州)等具有持久抗瘟性能;其中疣粒野生稻高抗细菌性条斑病,对白叶枯病抗性为0级,接近免疫,中抗稻瘟病.通过对品种多抗性组分分析和品种抗性系统聚类分析,提出在不同生态类型时、空动态的病叶片上的产孢量和病斑表型可作为简易、快速鉴定持久抗瘟性指标.  相似文献   

13.
14.
The inheritance of resistance for bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo), was studied in Minghui 63, an elite restorer line for a number of widely used rice hybrids in China. A new dominant gene against a Chinese Xoo strain JL691 in both the seedling and adult stages was identified in Minghui 63 and designated as Xa26( t). Using a total of 477 highly susceptible individuals from an F(2) population, the Xa26( t) locus was mapped to a region of about 1.68 cM. This locus co-segregated with marker R1506 and was 0.21 cM from marker RM224 on one side and 1.47 cM from marker Y6855RA on the other side, in rice chromosome 11. A contig map, composed of five non-redundant bacterial artificial chromosome (BAC) clones and spanning approximately 500 kb in length, was constructed. Analysis of recombination events in the Xa26( t) region with the highly susceptible F(2) individuals anchored the gene locus to a region covered by three overlapped BAC clones. Assay of the lines showing a double crossover in marker loci flanking Xa26( t), in a population of recombinant inbred lines carrying Xa26( t), further delineated the gene to a 20-kb fragment. The Xa26( t) locus is tightly linked to another bacterial blight resistance gene locus, Xa4.  相似文献   

15.
水稻抗稻瘟病基因Pi-2(t)物理图谱的构建   总被引:7,自引:0,他引:7  
应用BAC文库,采用基于分子标记的染色体着陆(marker-based chromosome landing)和染色体步查(chromosome walking)等手段,建立了包含有裟抗稻瘟病基因Pi-2(t)的物理图谱,该物理图谱由22个BAC克隆组成,遗传跨度8cM,而物理距离为925kb,该物理图谱的构建不仅为进一步分离和克隆该基因打下了基础,同时也可为分子标记辅助选择育种选择抗稻瘟病新材料  相似文献   

16.
Approaches utilizing microlinearity between related species allow for the identification of syntenous regions and orthologous genes. Within the barley Chromosome 7H(1) is a region of high recombination flanked by molecular markers cMWG703 and MWG836. We present the constructed physical contigs linked to molecular markers across this region using bacterial artificial chromosomes (BAC) from the cultivar Morex. Barley expressed sequence tags (EST), identified by homology to rice chromosome 6 between the rice molecular markers C425A and S1434, corresponded to the barley syntenous region of Chromosome 7H(1) Bins 2–5 between molecular markers cMWG703-MWG836. Two hundred and thirteen ESTs were genetically mapped yielding 267 loci of which 101 were within the target high recombination region while 166 loci mapped elsewhere. The 101 loci were joined by 43 other genetic markers resulting in a highly saturated genetic map. In order to develop a physical map of the region, ESTs and all other molecular markers were used to identify Morex BAC clones. Seventy-four BAC contigs were formed containing 2–102 clones each with an average of 19 and a median of 13 BAC clones per contig. Comparison of the BAC contigs, generated here, with the Barley Physical Mapping Database contigs, resulted in additional overlaps and a reduction of the contig number to 56. Within cMWG703-MWG836 are 24 agriculturally important traits including the seedling spot blotch resistance locus, Rcs5. Genetic and physical analysis of this region and comparison to rice indicated an inversion distal of the Rcs5 locus. Three BAC clone contigs spanning the Rcs5 locus were identified. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
To understand the molecular basis of broad-spectrum resistance to rice blast, fine-scale mapping of the two blast resistance (R) genes, Pi9( t) and Pi2( t), was conducted. These two genes were introgressed from different resistance donors, previously reported to confer resistance to many blast isolates in the Philippines, and were mapped to an approximately 10-cM interval on chromosome 6. To further test their resistance spectrum, 43 blast isolates collected from 13 countries were used to inoculate the Pi2( t) and Pi9( t) plants. Pi9( t)-bearing lines were highly resistant to all isolates tested, and lines carrying Pi2( t) were resistant to 36 isolates, confirming the broad-spectrum resistance of these two genes to diverse blast isolates. Three RAPD markers tightly linked to Pi9( t) were identified using the bulk segregant analysis technique. Twelve positive bacterial artificial chromosome (BAC) clones were identified and a BAC contig covering about 100 kb was constructed when the Pi9( t) BAC library was screened with one of the markers. A high-resolution map of Pi9( t) was constructed using BAC ends. The Pi2( t) gene was tightly linked to all of the Pi9( t) markers in 450 F(2) plants. These data suggest that Pi9( t) and Pi2( t) are either allelic or tightly linked in an approximately 100-kb region. The mapping results for Pi9( t) and Pi2( t) provide essential information for the positional cloning of these two important blast resistance genes in rice.  相似文献   

18.
Xa4 is a dominantly inherited rice gene that confers resistance to Philippine race 1 of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae in rice. In order to isolate the gene by positional cloning, a bacterial artificial chromosome (BAC) library was constructed from genomic DNA isolated from an Xa4-harboring accession, IRBB56. The library contains 55,296 clones with an average insert size of 132 kb, providing 14 rice genome equivalents. Three DNA markers closely linked to Xa4 were used to screen the library. The marker RS13, a resistance gene analogue that co-segregates with Xa4, identified 18 clones, of which four and six, respectively, were simultaneously detected by the other two markers, G181 and L1044. Fingerprinting and Southern analysis indicated that these clones overlapped and define an interval spanning 420 kb. In an F2 population derived from an indica variety, IR24, and its Xa4-containing near isogenic line (NIL), IRBB4, the susceptible plants were screened in order to map the Xa4 gene genetically and physically. Out of 24 insert ends isolated from the BACs in the contig, three revealed polymorphisms between IR24 and IRBB4. Two insert ends, 56M22F and 26D24R, flanked Xa4 on each side. Based on the overlap of the BACs, six overlapping clones were considered to include the Xa4 allele, one of which, 106P13, was chosen for further investigation.  相似文献   

19.
Ilag LL  Yadav RC  Huang N  Ronald PC  Ausubel FM 《Gene》2000,255(2):245-255
We initiated a search for disease resistance (R) gene homologues in rice cultivar IR64, one of the most agronomically important rice varieties in the world, with the assumption that some of these homologues would correspond to previously identified disease resistance loci. A family of rice R gene homologues was identified using the Arabidopsis NBS-LRR disease resistance gene RPS2 as a hybridization probe. Because member genes of this rice R gene family exhibit features characteristic of the NBS-LRR class of resistance genes, the family was given the name NRH (for NBS-LRR resistance gene homologues). Three members of the NRH family, NRH1, NRH2, and NRH3, were cloned and studied in detail. In IR64, NRH1 and NRH2 appear to encode full-length polypeptides, whereas NRH3 is prematurely truncated with a stop codon generated by a frameshift. NRH1 maps on chromosome 5, and NRH2 and NRH3 are less than 48kb apart on chromosome 11. Although NRH1, NRH2, and NRH3 map to regions of the rice genome where disease resistance loci to Xanthomonas oryzae pv. oryzae (Xoo) have been identified, susceptible rice varieties transformed with either NRH1 or NRH2 failed to exhibit increased resistance to a set of well-characterized Xoo strains.  相似文献   

20.
玉米细菌性条斑病非寄主抗性基因Rxo1转化水稻的研究   总被引:4,自引:0,他引:4  
水稻细菌性条斑病是我国重要的水稻病害之一,但是在水稻种质资源中尚未发现抗细菌性条斑病单个主效基因。利用农杆菌介导的转化系统将从玉米中克隆的细菌性条斑病非寄主抗性基因Rxo1转入我国2个杂交稻恢复系和2个常规水稻品种。转基因植株的PCR和Southern分析结果表明Rxo1基因已整合到受体基因组中,Rxo1基因单拷贝整合的转化体在自交T1代呈现抗感3∶1分离。人工接种实验和病菌的生长曲线表明携带Rxo1的转基因植株对水稻细条病菌可以产生过敏性抗病反应。上述结果为利用非寄主抗性基因防治该病害提供了有用的信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号