首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of mitochondrially inherited chloramphenicol-resistant (CAP-R) mutants were isolated in Chinese hamster cells. To determine whether the Chinese hamster CAP-R mutations were homologous to those isolated in mouse and human cell culture systems, we determined the nucleotide sequence of the region of the mitochondrial 16S rRNA gene spanning the peptidyl transferase-encoding region for eight CAP-R mutant lines in addition to the parental wildtype line. Three main conclusions are drawn from these studies. (1) Although the region of the gene encoding the peptidyl transferase domain is highly conserved relative to that of mice and rats, the contiguous sequences show less conservation. This sequence divergence not only includes the accumulation of single base pair replacements, but also the presence of small insertions or deletions. (2) For six of the CAP-R mutants, heteroplasmic single base pair changes were detected. These mapped to the same sites within the peptidyl transferase domain as the mutations found previously in mouse and human CAP-R mutants. (3) Two Chinese hamster CAP-R mutants, both with an unusual drug resistance phenotype, did not carry any mutations within the CAP-R peptidyl transferase domain. However, both carried a heteroplasmic mutation at the position corresponding to nucleotide 2505 of the mouse 16S rRNA gene, a site predicted to map within a stem/loop structure attached to this key domain of the ribosome. This is the first evidence for mitochondrial CAP-R mutations that map outside the peptidyl transferase region.  相似文献   

2.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达.  相似文献   

3.
The nucleotide sequence of the mitochondrial DNA (mtDNA) in the region coding for the 3' end of the large rRNA has been determined for two human cell lines bearing independent cytoplasmic chloramphenicol-resistant (CAP-r) mutations. Comparison of the sequences of these two phenotypically different CAP-r mutants with their CAP-sensitive (CAP-s) parental cell lines has revealed a single base change for each in a region which is highly conserved among species. One CAP-r mutation is associated with an A to G transition on the coding strand while the second contains a G to T transversion 52 nucleotides away. Comparable sequence changes in this region had previously been found for mouse and yeast cell mitochondrial CAP-r mutants. Thus, changes in the large rRNA gene eliminate the inhibition of the ribosome by CAP and different nucleotide changes may result in variations in the drug-r phenotype.  相似文献   

4.
Bioballistic transformation of carrot Daucus carota L. callus cultures with a plasmid containing the aadA (aminoglycoside 3'-adenyltransferase) gene and subsequent selection oftransformants on a selective medium containing spectinomycin (100-500 mg/l) yielded ten callus lines resistant to this antibiotic. PCR analysis did not detect exogenous DNA in the genomes of spectinomycin-resistant calluses. Resistance proved to be due to spontaneous mutations that occurred in two different regions of the chloroplast rrn16 gene, which codes for the 16S rRNA. Six lines displayed the G > T or G > C transverions in position 1012 of the rrn16 gene, and three lines had the A > G transition in position 1138 of the gene. Chloroplast mutations arising during passages of callus cultures in the presence of spectinomycin were described in D. carota for the first time. The cause of spectinomycin resistance was not identified in one line. The mutations observed in the D. carota plastid genome occurred in the region that is involved in the formation of a double-stranded region at the 3' end of the 16S rRNA and coincided in positions with the nucleotide substitutions found in spectinomycin-resistant plants of tobacco Nicotiana tabacum L. and bladderpod Lesquerella fendleri L.  相似文献   

5.
Chloramphenicol-resistant (CAP-R) mouse and Chinese hamster lines were isolated in a single selection step in drug medium containing pyruvate. Cellular expression of the CAP-R phenotype required pyruvate--or an appropriate substitute--as a nutritional supplement. Subclone lines which were pyruvate independent (PYR-IND) arose in second-step selections at a high frequency. CAP-R PYR-IND Chinese hamster mutants could be directly isolated in single-step selections but at a very low frequency. Subclone lines (OLI-R) which were cross-resistant to oligomycin were isolated in a third selection cycle. The PYR-IND and OLI-R phenotypes were cotransmitted with the CAP-R mtDNA mutation but were expressed at the cellular level only if the number of mutant mitochondrial genomes exceeded a minimum threshold value. Analysis of a mtDNA restriction fragment alteration in one series of mutants supported this model. Threshold limits for cellular expression of mitochondrial mutant phenotypes are likely to be a general phenomenon and will constrain models of the origin and segregation of mtDNA mutations.  相似文献   

6.
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNASer(UCN) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.  相似文献   

7.
Fromm H  Edelman M  Aviv D  Galun E 《The EMBO journal》1987,6(11):3233-3237
The chloroplast genes coding for the 16S ribosomal RNA from several spectinomycin-resistant Nicotiana mutants were analyzed. Two classes of mutants were identified. In one class, a G to A base transition is found at position 1140 of the tobacco-chloroplast 16S rRNA gene, which eliminates an AatII restriction endonuclease site. This base transition is proximal to a mutation previously described for spectinomycin resistance in Escherichia coli. In the other class, a novel G to A transition is found at position 1012 of the 16S rRNA gene. Although the mutations in the two classes are 128 nucleotides apart, the secondary structure model for 16S rRNA suggests that the two mutated nucleotides are in spatial proximity on opposite sides of a conserved stem structure in the 3' region of the molecule. Phylogenetic evidence is presented linking this conserved stem with spectinomycin resistance in chloroplasts. Perturbation of the stem is proposed to be the molecular-genetic basis for rRNA-dependent spectinomycin resistance.  相似文献   

8.
Nuclear gene(s) have been shown to modulate the phenotypic expression of mitochondrial DNA mutations. We report here the identification and characterization of the yeast nuclear gene MTO2 encoding an evolutionarily conserved protein involved in mitochondrial tRNA modification. Interestingly, mto2 null mutants expressed a respiratory-deficient phenotype when coexisting with the C1409G mutation of mitochondrial 15 S rRNA at the very conservative site for human deafness-associated 12 S rRNA A1491G and C1409T mutations. Furthermore, the overall rate of mitochondrial translation was markedly reduced in a yeast mto2 strain in the wild type mitochondrial background, whereas mitochondrial protein synthesis was almost abolished in a yeast mto2 strain carrying the C1409G allele. The other interesting feature of mto2 mutants is the defective expression of mitochondrial genes, especially CYTB and COX1, but only when coexisting with the C1409G allele. These data strongly indicate that a product of MTO2 functionally interacts with the decoding region of 15 S rRNA, particularly at the site of the C1409G or A1491G mutation. In addition, we showed that yeast and human Mto2p localize in mitochondria. The isolated human MTO2 cDNA can partially restore the respiratory-deficient phenotype of yeast mto2 cells carrying the C1409G mutation. These functional conservations imply that human MTO2 may act as a modifier gene, modulating the phenotypic expression of the deafness-associated A1491G or C1409T mutation in mitochondrial 12 S rRNA.  相似文献   

9.
Mutations in mitochondrial DNA (mtDNA), particularly those in the 12S rRNA gene, have been shown to be associated with sensorineural hearing loss. Here we report the clinical and sequence analysis of the entire mitochondrial genome in three Chinese subjects with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation showed a variable phenotype of hearing impairment including the age of onset and audiometric configuration in these subjects. Sequence analysis of the complete mitochondrial genomes in three subjects showed the distinct sets of mtDNA polymorphism, in addition to the identical mitochondrial 12S rRNA T1095C mutation. This mutation was previously identified to be associated with hearing impairment in three families from different genetic backgrounds. The T1095C mutation was absent in 364 Chinese control. In fact, the occurrence of the T1095C mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. Among other nucleotide changes, the A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 exhibited a high evolutionary conservation. These data suggest that the T1095C mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairments and A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 may contribute to the phenotypic expression of the T1095C mutation in these subjects.  相似文献   

10.
大多数脊椎动物的线粒体基因组(约16—18kb)的组成是相对较稳定的,但在不同类群中,线粒体基因组在基因结构和基因排列方式等方面均显示了极大的多样性,这种多样性可能反映了真核细胞不同的进化路线(Saccone et al.,1999)。就目前的研究而言,线粒体基因组是惟一一个能够从基因组水平上来分析动物系统发生的分子标记,可以从线粒体基因组序列信息、基因组成及基因排列方式等进行多方位的分子进化研究,因而线粒体基因组全序列将成为动物分子系统发生最有力的证据(Saccone et al.,1999)。  相似文献   

11.
Bioballistic transformation of carrot (Daucus carota L.) callus cultures with a plasmid containing the aadA (aminoglycoside 3′-adenyltransferase) gene and subsequent selection of transformants on a selective medium containing spectinomycin (100–500 mg/l) yielded ten callus lines resistant to this antibiotic. PCR analysis did not detect exogenous DNA in the genomes of spectinomycin-resistant calluses. Resistance proved to be due to spontaneous mutations that occurred in two different regions of the chloroplast rrn16 gene, which codes for the 16S rRNA. Six lines displayed the G > T or G > C transverions in position 1012 of the rrn16 gene, and three lines had the A > G transition in position 1138 of the gene. Chloroplast mutations arising during passages of callus cultures in the presence of spectinomycin were described in D. carota for the first time. The cause of spectinomycin resistance was not identified in one line. The mutations observed in the D. carota plastid genome occurred in the region that is involved in the formation of a double-stranded region at the 3′ end of the 16S rRNA and coincided in positions with the nucleotide substitutions found in spectinomycin-resistant plants of tobacco Nicotiana tabacum L. and bladderpod Lesquerella fendleri L.  相似文献   

12.
Using RNase protection analysis, we found a novel C to G mutation at nucleotide position 3093 of mitochondrial DNA (mtDNA) in a previously reported 35-year-old woman exhibiting clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome together with diabetes mellitus, hyperthyroidism and cardiomyopathy. The patient also had an A3243G mutation in the tRNA(Leu(UUR)) gene and a 260-base pair duplication in the D-loop of mtDNA. The fibroblasts of the patient were cultured and used for the construction of cybrids using cytoplasmic transfer of the patient's mtDNA to the mtDNA-less rho(0) cells. RNA isolated from the cybrids was subjected to RNase protection analysis, and a C3093G transversion at the 16S rRNA gene and a MELAS-associated A3243G mutation of mtDNA were detected. The novel C3093G mutation together with the A3243G transition were found in muscle biopsies, hair follicles and blood cells of this patient and also in her skin fibroblasts and cybrids. The proportion of the C3093G mutant mtDNA in muscle biopsies of the patient was 51%. In contrast, the mutation was not detected in three sons of the proband. To characterize the impact of the mtDNA mutation-associated defects on mitochondrial function, we determined the respiratory enzyme activities of the primary culture of fibroblasts established from the proband, her mother and her three sons. The proportions of mtDNA with the C3093G transversion and the A3243G transition in the fibroblasts of the proband were 45 and 58%, respectively. However, the fibroblasts of the proband's mother and children harbored lower levels of mtDNA with the A3243G mutation but did not contain the C3093G mutation. The complex I activity in the proband's fibroblasts was decreased to 47% of the control but those of the fibroblasts of the mother and three sons of the proband were not significantly changed. These findings suggest that the C3093G transversion together with the A3243G transition of mtDNA impaired the respiratory function of mitochondria and caused the atypical MELAS syndrome associated with diabetes mellitus, hyperthyroidism and cardiomyopathy in this patient.  相似文献   

13.
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.  相似文献   

14.
The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.  相似文献   

15.
Ever increasing evidence has been provided on the accumulation of mutations in the mitochondrial DNA (mtDNA) during the aging process. However, the lack of direct functional consequences of the mutant mtDNA load on the mitochondria-dependent cell metabolism has raised many questions on the physiological importance of the age-related mtDNA variations. In the present work, we have analyzed the bioenergetic properties associated with the age-related T414G mutation of the mtDNA control region in transmitochondrial cybrids. The results show that the T414G mutation does not cause per se any detectable bioenergetic change. Moreover, three mtDNA mutations clustered in the 16S ribosomal RNA gene cosegregated together with the T414G in the same cybrid cell line. Two of them, namely T1843C and A1940G, are novel and associate with a negative bioenergetic phenotype. The results are discussed in the more general context of the complex heterogeneity and the dramatic instability of the mitochondrial genome during cell culture of transmitochondrial cybrids.  相似文献   

16.
R. Garesse 《Genetics》1988,118(4):649-663
The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G + C on both strands. The predominant type of transition is strand specific.  相似文献   

17.
Zheng BJ  Peng GH  Chen BB  Fang F  Zheng J  Wu Y  Liang LZ  Nan BY  Tang XW  Zhu Y  Lu JX  Guan MX 《遗传》2012,34(6):695-704
线粒体DNA(Mitochondrial DNA,mtDNA)突变是引起耳聋的重要原因之一。尤其是12S rRNA基因是药物性耳聋与非综合征型耳聋相关的突变热点区域。文章收集了浙江省各地区非综合征型及药物性耳聋患者标本318例,对其进行临床和分子遗传学评估。12S rRNA基因突变分析发现34个变异位点,已知的1555A>G、1494C>T和1095T>C突变分别占9.1%、0.6%和1.25%。结构和种系发生分析显示,839A>G和1452T>C突变位于12S rRNA基因的高度保守区域且未在449例正常对照组中发现,可能增加了耳毒性药物的敏感性。其他变异位点为多态性位点。文章数据支持了12S rRNA基因是耳毒性药物的作用靶点之一这一理论,为预测个体耳毒性的发生风险,提高氨基糖甙类药物治疗安全性提供了有价值的信息,以期降低耳聋的发生。  相似文献   

18.
It is well known that there is heterogeneity of mitochondrial DNA (mtDNA) within and among natural populations of same species. The polymorphism level of particular regions of mtDNA gives valuable results in detection of population genetic structure. The aim of this paper was to detect polymorphism of three mtDNA regions: cytochrome oxidase I (COI), Control region, and 12S/16S rRNA, by the mtDNA RFLP-PCR method, in three Lepus europaeus populations from Vojvodina province (Serbia and Montenegro). Polymorphism was detected within the two regions, COI and Control region, while 12S/16S rRNA region was monomorphic in all 77 individuals. Eight haplotypes were detected in the brown hare population in Vojvodina, and three were unique for the Srem brown hare population.  相似文献   

19.
Investigations of intraindividual sequence diversity in mtDNA are a key step in exploring the linkage between somatic mutations in mtDNA and mitochondrial genome evolution. This paper reports a directional cloning procedure enabling the isolation of multiple copies of the D-loop region of the mitochondrial genome from the fish Ameiurus nebulosus. Sequence analysis of 708 D-loop molecules revealed eight mutants, an average intraindividual mutation frequency of 1.12%. Three different types of mutations were detected but each derived from a single mutational event. By contrasting the spectrum of nucleotide variation at multiple biological levels, one can investigate the effects of spontaneous mutations on genome evolution. Such hierarchical analysis suggested shifts in the type and distribution of mtDNA (mitochondrial DNA) mutations at different biological levels, indicating the need to recognize three different rates of mtDNA sequence change from the cellular to population level.  相似文献   

20.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here a systematic mutational screening of the mitochondrial 12S rRNA gene in 128 Chinese pediatric subjects with sporadic aminoglycoside-induced and non-syndromic hearing loss. We show that aminoglycoside ototoxicity accounts for 48% of cases of hearing loss in this Chinese pediatric population. Of the known deafness-associated mutations in this gene, the incidence of the A1555G mutation is ~13% and ~2.9% in this Chinese pediatric population with aminoglycoside-induced and non-syndromic hearing loss, respectively. Furthermore, mutations at position 961 in the 12S rRNA gene account for ~1.7% and 4.4% of cases of aminoglycoside-induced and non-syndromic hearing loss in this Chinese clinical population, respectively. The T1095C mutation has been identified in one maternally inherited family with aminoglycoside-induced and non-syndromic hearing loss. However, the C1494T mutation was not detected in this clinical population. In addition, three variants, A827G, T1005C and A1116G, in the 12S rRNA gene, localized at highly conserved sites, may play a role in the pathogenesis of aminoglycoside ototoxicity. These data strongly suggest that the mitochondrial 12S rRNA is a hot-spot for deafness-associated mutations in the Chinese population.Z. Li and R. Li contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号