首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
胍变性肌酸激酶复性复活过程中构象与活力的比较研究   总被引:2,自引:0,他引:2  
本文讨论了经3M盐酸胍变性的兔肌肌酸激酶复性和复活的动力学过程,对二者进行了比较,以期从量的关系上研究酶的构象与催化活力之间的关系。从萤光和紫外差吸收光谱的变化看,复性过程基本上是变性过程的逆转。变性肌酸激酶复性遵循一级反应方程,以萤光强度变化为标志的速度常数k=2.2×10~(-3)秒~(-1)。酶复活过程却表明由两个一级反应所组成,其速度常数分别为k_1=0.97×10~(-3)秒~(-1),k_2=0.17×10~(-3)秒~(-1)。可见构象变化速度与复活过程中较快的反应速度相近。这说明在反映色氨酸及酪氨酸微环境的构象变化基本完成之后,活力恢复的过程还没有终结。可以认为兔肌肌酸激酶的构象与活力密切相关,酶的构象完整是催化活力的基础。  相似文献   

2.
本文讨论了经3M盐酸胍变性的兔肌肌酸激酶复性和复活的动力学过程,对二者进行了比较,以期从量的关系上研究酶的构象与催化活力之间的关系。从萤光和紫外差吸收光谱的变化看,复性过程基本上是变性过程的逆转。变性肌酸激酶复性遵循一级反应方程,以萤光强度变化为标志的速度常数k=2.2×10~(-3)秒~(-1)。酶复活过程却表明由两个一级反应所组成,其速度常数分别为k_1=0.97×10~(-3)秒~(-1),k_2=0.17×10~(-3)秒~(-1)。可见构象变化速度与复活过程中较快的反应速度相近。这说明在反映色氨酸及酪氨酸微环境的构象变化基本完成之后,活力恢复的过程还没有终结。可以认为兔肌肌酸激酶的构象与活力密切相关,酶的构象完整是催化活力的基础。  相似文献   

3.
前已报导,在脲或胍的作用下,肌酸激酶失活速度远快于酶分子整体构象变化的速度.本文报导利用在变性剂存在下研究底物反应的方法对分子较小,由单亚基组成,并有五个二硫键使分子结构更加稳定的胰凝乳蛋白酶,在盐酸胍作用下的变性,失活以及相应的复性,复活进行动力学的比较.结果表明失活仍快于构象变化速度,复活慢于构象的恢复速度.实验结果还表明已经充分复活的酶和未经变性的酶在溶液中的构象存在着某些差别.  相似文献   

4.
鸭肝脂肪酸合成酶的胍变性与失活   总被引:3,自引:0,他引:3  
报道了鸭肝脂肪酸俣成酶在胍变性过程中构变性过程中构象变化和活性变化的关系,首次验证了邹承鲁提出的酶活性部位构象的理论适用于多功能复合酶,同时该酶变性及复性均可测定出多个阶段,且证明有无活性稳态酶存在,在低浓度盐酸胍溶液中该酶的全反应活性和其中两个还原部位单独活性被同步可逆抑制,随着胍浓度增高,出现不可逆失活且程度和速度均迅速提高,在0.54mol/L胍中该酶全反应活性在1.5分种内已有一半不可逆失  相似文献   

5.
盐酸胍浓度对变性溶菌酶复性的影响   总被引:5,自引:0,他引:5  
研究了复性液中盐酸胍浓度对变性溶菌酶复性的影响。变性酶的复性收率与复性液中盐酸胍度浓度紧密相关,获得高复性收率所需的盐酸胍浓度随酶浓度提高而增大。当酶浓度较低时(0.06-0.21g/L),0.7mol/L的盐酸胍即可溶菌酶完全复性;当酶浓度较高时(0.6-1.05g/L),提高盐酸胍浓度至1.0-1.5mol/L才可使复性收率达到95%以上。另外,酶的复性速率随盐酸胍浓度增大而下降。因此,根据酶浓度选择最佳盐酸胍浓度是提高蛋白质复性收率的关键。  相似文献   

6.
以紫外差光谱、荧光光谱为监测手段对金黄色葡萄球菌核酸酶类似物(SNase R)在胍溶液中构象与活力变化进行了比较.SNase R在Llmol L0.8mol L和0.5mol L胍溶液变性时变性过程均为两个一级反应,但是酶在上述胍浓度下失活的速度远快于构象变化的速度:酶在同一胍浓度下活力丧失的程度也远快于构象变化的程度.上述结果表明:SNase R的活性部位可能位于柔性较大的区域.  相似文献   

7.
用蛋白质内源荧光、疏水荧光探针TNS及蛋白酶K限制性酶解等方法研究了二氢叶酸还原酶在盐酸胍变性过程中的构象变化及动力学,并与活力变化进行了比较.TNS可以监测到与激活同步的构象变化;盐酸胍浓度大于0.75mol/L时,二氢叶酸还原酶被蛋白酶K水解速度增大;当盐酸胍浓度大于1.2mol/L时,才能监测到酶分子整体构象的变化.以上结果表明二氢叶酸还原酶在盐酸胍溶液中的变性并不符合标准的二态模型,而是先经历构象逐步松散的序变过程,然后发生协同的构象伸展.二氢叶酸还原酶在低浓度盐酸胍溶液中的激活是由于酶活性部位构象的微小变化引起的.酶活性部位构象的变化虽然降低了酶与废物的结合能力,但加快了酶促反应限速步骤,即底物解离速度而使酶活力升高.  相似文献   

8.
纯化的高梁叶片磷酸烯醇式丙酮酸羧化酶(PEP羧化酶)经不同浓度的盐酸胍处理变性失活后,在试验的蛋白浓度范围内,它的失活时间进程的动力学分析表明为一级反应。0.4 M盐酸胍处理25分钟后(O℃),酶的催化活性完全丧失,酶蛋白的远紫外圆二色性光谱、内源荧光光谱及免疫特异性等测定均表明酶的结构发生了深刻变化。甘油及PEP羧化酶的变构效应剂G6P和甘氨酸对酶在盐酸胍溶液中的变性作用有一定的保护效果。变性酶用复性缓冲液稀释20倍后,在最佳条件下,再经30分钟保温,酶的催化活性能恢复70%以上。G6P和甘氨酸能促进变性酶的复性,甘油亦有明显效果。随着酶活性的恢复,它的远紫外圆二色性、内源荧光及免疫特异性也随之恢复,变性酶的复性速率在常温下(25℃)比在低温下(0℃)要快得多。  相似文献   

9.
 用荧光光谱法、截流荧光法和酶活力测定法研究了在盐酸胍溶液中米曲霉氨基酰化酶变性动力学。我们发现在4.8mol/L盐酸胍溶液作用下(0.05mol/L磷酸缓冲溶液,pH7.4,25℃),氨基酰化酶二聚体解离成单亚基过程是一个十分快速的过程,反应速率常数k为3361l/s,即约需3ms时间完成;而单亚基分子的构象变化需要约20min方能到达平衡态,这是一个逐渐变化的缓慢过程。酶分子在胍作用下的失活现象同酶分子的结构变化紧密相关,在胍浓度大于4mol/L时酶完全失活。在高浓度盐酸胍下酶失活主要是因为酶二聚体迅速解离成单亚基的过程和单亚基构象逐渐变化的缓慢过程。双亚基解离常数大小标志着酶分子亚基间作用力的强弱。  相似文献   

10.
金黄色葡萄球菌核酸酶(StaphlococcalNuclease,SNase)与其类似物(SNaseR)的平衡态盐酸胍变性与复性曲线及比活力值均无明显差别。两者变性与复性的构象变化是可逆的,但活力恢复滞后于失活。低浓度盐酸胍对SNaseR有20%左右的激活,而低浓度(0.125mol/L)的NaCl可使SNaseR的活力提高近一倍。SNaseR盐酸胍变性的失活先于构象变化。比较加入底物竞争抑制剂脱氧胸腺嘧啶核苷3'-5'-二磷酸(pdTp)后得到的(SNaseR+pdTp+Ca2+)三元络合物平衡态盐酸胍变性的Trp与Tyr内源荧光的变化,观测到该酶的活性部位先于整体构象发生变化,结果导致pdTp解离常数Kd增大.  相似文献   

11.
D-Lactate dehydrogenase (EC 1.1.1.28) from Limulus polyphemus is a homodimer which is composed of identical subunits of Mr = 35 000. The enzyme may be reversibly denatured and dissociated at acid pH or in 6M guanidine X HCl. The sigmoidal time course of reactivation obeys a consecutive uni-bimolecular mechanism with k1 = 6 X 10(-4) S-1 and k2 = 1.3 X 10(-4) M-1 S-1 (20 degrees C) as first- and second-order rate constants. Cross-linking experiments with glutaraldehyde prove that reactivation and dimer formation run parallel. Joint "synchronous" reconstitution of the enzyme with dimeric porcine mitochondrial malate dehydrogenase (after denaturation in 6M guanidine X HCl) does not yield active hybrids. The unchanged kinetics of reactivation in the absence and presence of the prospective partner of hybridization prove that inactive hybrid intermediates may also be excluded. The absence of hybrids upon synchronous reconstitution of the two closely related dimeric NAD-dependent dehydrogenases clearly suggests that the assembly of nascent oligomeric proteins must be highly specific.  相似文献   

12.
R Rudolph  I Fuchs  R Jaenicke 《Biochemistry》1986,25(7):1662-1669
Malate dehydrogenase occurs in virtually all eucaryotic cells in mitochondrial and cytoplasmic forms, both of which are composed of two identical subunits. The reactivation of the mitochondrial isoenzyme has been the subject of previous studies [Jaenicke, R., Rudolph, R., & Heider, I. (1979) Biochemistry 18, 1217-1223]. In the present study, the reconstitution of cytoplasmic malate dehydrogenase from porcine heart after denaturation by guanidine hydrochloride has been determined. The enzyme is denatured by greater than 1.2 M guanidine hydrochloride; upon reconstitution, approximately 60% of the initial native enzyme can be recovered. The kinetics of reconstitution after maximum unfolding by 6 M guanidine hydrochloride were analyzed by fluorescence, far-ultraviolet circular dichroism, chemical cross-linking with glutaraldehyde, and activity measurements. After fast folding into structured intermediates (less than 1 min), formation of native enzyme is governed by two parallel slow and very slow first-order folding reactions (k1 = 1.3 X 10(-3) S-1 and k2 = 7 X 10(-5) S-1 at 20 degrees C). The rate constant of the association step following the slow folding reaction (determined by k1) must be greater than 10(6) M-1 S-1. The energy of activation of the slow folding step is of the order of 9 +/- 1 kcal/mol; the apparent rate constant of the parallel very slow folding reaction is virtually temperature independent. The intermediates of reassociation must be enzymatically inactive, since reactivation strictly parallels the formation of native dimers. Upon acid dissociation (pH 2.3), approximately 35% of the native helicity is preserved, as determined by circular dichroism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Denaturation of fructose-1,6-bisphosphatase (Fru-P2-ase, EC 3.1.3.11) by urea and renaturation of denatured enzyme has been investigated. Denaturation lowers the specific activity of the enzyme but even at 8 M urea concentration in the presence of sucrose the activity of the enzyme is detectable. Centrifugation of the enzyme in a sucrose density gradient at 4 M urea reveals one peak of protein corresponding to a dimer. Denaturation increases intensity of intrinsic fluorescence of Fru-P2-ase and causes a red shift of fluorescence peak of the thioisoindole derivative of the enzyme. Renaturation of the denatured enzyme followed as the reappearance of enzymatic activity in the presence and absence of bovine serum albumin (BSA) is characterised by first order kinetics, k = 1.78 X 10(-3) s-1. The presence of BSA does not affect the rate of renaturation but perceptibly increases the recovery of enzymatic activity. A 100% recovery of Fru-P2-ase activity is observed at 0.5 micrograms/mL concentration of the enzyme and 2 mg/mL of BSA.  相似文献   

14.
Formiminotransferase-cyclodeaminase denatured in 6 M guanidine hydrochloride (Gdn.HCl) refolds and reassembles to the native octameric structure upon dilution into buffer. Both enzymic activities are recovered to greater than 90%, and the renatured enzyme "channels" the formiminotetrahydropteroylpentaglutamate intermediate. Under conditions where the two activities are recovered simultaneously, the rate-limiting step in reactivation is first order with respect to protein, with k = 1.9 X 10(-5) s-1 at 22 degrees C and delta E approximately equal to 15 kcal mol-1. In the presence of 1.5 M urea, renaturation is arrested at the level of dimers having only transferase activity. Subsequent dialysis to remove the urea leads to recovery of deaminase activity and formation of octamer. Kinetic studies with mono- and pentaglutamate derivatives of the folate substrates demonstrated that native and renatured enzyme as well as deaminase-active dimers [Findlay, W. A., & MacKenzie, R. E (1987) Biochemistry 26, 1948-1954] have much higher affinity for polyglutamate substrates, while the transferase-active dimers do not. These results indicate that the transferase activity is associated with one type of subunit-subunit interaction in the native tetramer of dimers and that the polyglutamate binding site and the deaminase activity are associated with the other interface. A dimeric transferase-active fragment generated by limited proteolysis of the native enzyme can also be renatured from 6 M Gdn.HCl, confirming that it is an independently folding domain capable of reforming one type of subunit interaction.  相似文献   

15.
The allosteric phosphofructokinase from Escherichia coli has been renatured after complete unfolding in concentrated guanidine hydrochloride. The enzyme regains both its catalytic and regulatory abilities quantitatively. The kinetics of reactivation are biphasic and are consistent with a two-step mechanism in which a monomolecular reaction precedes a bimolecular one. The presence of ATP during reactivation increases the rate at which phosphofructokinase is renatured; the second order rate constant of the bimolecular step increases from about 10(4) M-1 S-1 in the absence of ATP to about 2 X 10(5) M-1 S-1 in the presence of 1 mM ATP. The other ligands of the enzyme have no effect on reactivation. It is tentatively proposed that a folded monomer is the intermediate species which already possesses a functional ATP-binding site and that the rate-limiting association step is the formation of dimeric species. This interpretation is compatible with the known three-dimensional structure of another bacterial phosphofructokinase, that from Bacillus stearothermophilus.  相似文献   

16.
The rate constant for the binding of myosin subfragment-1 (S-1) with F-actin in the absence of nucleotide, k1, and that for dissociation of the F-actin-myosin subfragment-1 complex (acto-S-1), k-1, were measured independently. The rate of S-1 binding with F-actin was measured from the time course of the change in the light scattering intensity after mixing S-1 with various concentrations of F-actin and k1 was found to be 2.55 X 10(6) M-1 X S-1 at 20 degrees C. The dissociation rate of acto-S-1 was determined using F-actin labeled with pyrenyl iodoacetamide (Pyr-FA). Pyr-FA, with its fluorescence decreased by binding with S-1, was mixed with acto-S-1 complex and the rate of displacement of F-actin by Pyr-FA was measured from the decrease in the Pyr-FA fluorescence intensity. The k-1 value was calculated to be 8.5 X 10(-3) S-1 (or 0.51 min-1). The value of the dissociation constant of S-1 from acto-S-1 complex, Kd, was calculated from Kd = k-1/k1 to be 3.3 X 10(-9) M at 20 degrees C. Kd was also measured at various temperatures (0-30 degrees C), and the thermodynamic parameters, delta G degree, delta H degree, and delta S degree, were estimated from the temperature dependence of Kd to be -11.3 kcal/mol, +2.5 kcal/mol, and +47 cal/deg . mol, respectively. Thus, the binding of the myosin head with F-actin was shown to be endothermic and entropy-driven.  相似文献   

17.
The renaturation of free and Sepharose-immobilized D-amino-acid oxidase (D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3), after its denaturation with 6 M guanidine hydrochloride, was investigated. No reactivation, or extremely limited reactivation (less than or equal to 4+), was obtained with the free enzyme, is spite of various attempts including the use of dialysis or buffers containing cofactors, different types of anions, surfactants and low concentrations of denaturing agents. The main obstacle to renaturation appeared to be the interaction among denatured or partially renatured monomers giving rise to inactive aggregates. In contrast, using the immobilized enzyme approach, substantial renaturation (up to 50%) of D-amino-acid oxidase was achieved. The denaturation-renaturation process was followed by monitoring the catalytic activity as well as the intrinsic protein fluorescence. An inverse correlation was found to exist between the degree of matrix activation by CNBr and the yield of enzyme reactivation. The anions of the lyotropic series markedly influenced the reactivation, showing an effectiveness opposite to their salting-out potential (thiocyanate congruent to iodide greater than chloride greater than phosphate congruent to sulphate congruent to citrate). Instead, the anions considerably increased the activity and stability of free and immobilized enzyme, according to their salting-out potential. Immobilized monomers of D-amino-acid oxidase, which in solution undergoes self-association, showed poor capacity to interact with the free enzyme: thus they appear unsuitable for analytical and preparative purposes.  相似文献   

18.
Two types (isoenzymes) of octopine dehydrogenase (A and B) from Pecten jacobaeus adductor muscle were purified to homogeneity, applying affinity chromatography as an efficient final step of purification. Both forms of the enzyme differ in their electrophoretic mobility. All other physico-chemical and enzymatic properties, as well as the folding behaviour were found to be identical. Interconversion of one form into the other was not detectable. Sedimentation equilibrium, gel permeation chromatography, and NaDodSO4/polyacrylamide gel electrophoresis yield a relative molecular mass of 45000 +/- 1500 for both native and denatured enzyme. The unfolding transition at varying guanidine X HCl concentrations is characterized by a two-step profile: at 0.4-0.8 M, partial unfolding is parallelled by inactivation; at 2.0-2.4 M the residual structure is destroyed in a second unfolding step. Beyond 2.8 M no further changes in fluorescence emission and dichroic absorption are observed. At 0.4-1.8 M guanidine X HCl, partial unfolding is superimposed by aggregation. The emission maximum of the intrinsic protein fluorescence at 327 nm is shifted to 352 nm upon denaturation in 6 M guanidine X HCl. Changes in the far-ultraviolet circular dichroism indicate complete loss of the overall backbone structure in this denaturant, including the native helix content of about 33%. Denaturation in 6 M guanidine X HCl, as monitored by the decrease of protein fluorescence, is fast (less than 8s). Upon reactivation after short denaturation, about 25% of the activity is recovered in a fast initial phase (less than 20s). The product of this phase has a similar stability towards destabilizing additives or proteases as the native enzyme. The slow phase of reactivation, which predominates after long-term denaturation, is determined by a single first-order reaction characterized by tau = 29 +/- 3 min (20 degrees C). This reaction must be a relatively late event on the folding pathway, preceded by the fast formation of a structured intermediate, as indicated by the immediate recovery of the native fluorescence. The structural rearrangements, which are rate-limiting for reactivation after long-term denaturation, are characterized by a high energy of activation (112 +/- 8 kJ/mol). The slow reactivation step is compatible in rate with the first-order folding reactions involved in the reconstitution of several oligomeric dehydrogenases [c.f. R. Jaenicke and R. Rudolph (1983) Colloq. Ges. Biol. Chem. Mosbach 34, 62-90].  相似文献   

19.
Escherichia coli DNA photolyase (photoreactivating enzyme) is a flavoprotein. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and, upon illumination with 300-600 nm radiation, catalyzes the photosensitized cleavage of the cyclobutane ring thus restoring the integrity of the DNA. We have studied the binding reaction using the techniques of nitrocellulose filter binding and flash photolysis. The enzyme binds to dimer-containing DNA with an association rate constant k1 estimated by two different methods to be 1.4 X 10(6) to 4.2 X 10(6) M-1 S-1. The dissociation of the enzyme from dimer-containing DNA displays biphasic kinetics; for the rapidly dissociating class of complexes k2 = 2-3 X 10(-2) S-1, while for the more slowly dissociating class k2 = 1.3 X 10(-3) to 6 X 10(-4) S-1. The equilibrium association constant KA, as determined by the nitrocellulose filter binding assay and the flash photolysis assay, was 4.7 X 10(7) to 6 X 10(7) M-1, in reasonable agreement with the values predicted from k1 and k2. From the dependence of the association constant on ionic strength we conclude that the enzyme contacts no more than two phosphodiester bonds upon binding; this strongly suggests that the pyrimidine dimer is the main structural determinant of specific photolyase-DNA interaction and that nonspecific ionic interactions do not contribute significantly to substrate binding.  相似文献   

20.
Fluorescence titration and fluorescence stopped-flow studies were performed on carp muscle parvalbumin components 1, 2, 3, and 5 (the latter three components were modified with a SH-directed fluorescent reagent, dansyl-L-cysteine). Apparent binding constants (Kapp) of Ca2+ to these components decrease in the order of component 2 (Kapp = 2.8 +/- 0.9 X 10(8) M-1) greater than component 1 (Kapp = 1.25 +/- 0.25 X 10(8) M-1) greater than component 3 = component 5 (Kapp = 4.0 +/- 0.5 X 10(7) M-1) in 30 mM KCl, 50 mM Na-cacodylate-HCl, pH 7.0 at 20 degrees C. The rate constant of the conformational change of parvalbumin induced by Ca2+ binding or removal decreases in the order of component 2 greater than component 1 greater than component 5 greater than or equal to component 3; that is, component 2 undergoes the fastest conformational change and component 3 the slowest in response to the rapid free Ca2+ concentration ([Ca2+]) change in the protein solution. The fluorescence titration curves and [Ca2+]-dependences of the rate constants are analyzed by a simple two-state model, (partially unfolded state) k1 in equilibrium k2 (folded state). It is shown that the equilibrium constant K = k1/k2 depends on the second power of [Ca2+], the rate constant k1 on the first power of [Ca2+] and k2 on the inverse first power of [Ca2+], respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号