首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察十五肽BPC-157对人脐静脉内皮细胞株HUVEC增殖、周期、迁移及小管形成的影响。方法:用不同浓度(0、1、5、10、50、100μg/mL)的BPC-157作用于HUVEC细胞株,采用MTT法检测药物对内皮细胞增殖的影响,通过流式细胞仪观察细胞周期的变化,经细胞划痕和Transwell实验检测药物对内皮细胞迁移的影响,并且通过小管形成实验观察BPC-157对内皮细胞小管形成能力的影响。结果:HUVEC细胞株经BPC-157刺激48 h后,细胞增殖率和各时期细胞比例没有明显变化;而在刺激12 h时,BPC-157显著性促进细胞伤口愈合及穿膜细胞数的增加(P0.01);刺激8 h时,给药组细胞开始聚合,形成复杂的管状网络结构,特别是5μg/mL剂量组。结论:十五肽BPC-157对人脐静脉内皮细胞株HUVEC增殖及细胞周期的改变基本没有影响,但对内皮细胞的迁移及小管形成能力具有明显的促进作用。  相似文献   

2.
Heparin affin regulatory peptide (HARP) is an 18-kDa secreted growth factor that has a high affinity for heparin and a potent role on tumor growth and angiogenesis. We have previously reported that HARP is mitogenic for different types of endothelial cells and also affects cell migration and differentiation (12). In this study we examined the signaling pathways involved in the migration and tube formation on matrigel of human umbilical vein endothelial cells (HUVEC) induced by HARP. We report for the first time that receptor-type protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), which is a receptor for HARP in neuronal cell types, is also expressed in HUVEC. We also document that HARP signaling through RPTPbeta/zeta leads to activation of Src kinase, focal adhesion kinase, phosphatidylinositol 3-kinase, and Erk1/2. Sodium orthovanadate, chondroitin sulfate-C, PP1, wortmannin, LY294002, and U0126 inhibit HARP-mediated signaling and HUVEC migration and tube formation. In addition, RPTPbeta/zeta suppression using small interfering RNA technology interrupts intracellular signals and HUVEC migration and tube formation induced by HARP. These results establish the role of RPTPbeta/zeta as a receptor of HARP in HUVEC and elucidate the HARP signaling pathway in endothelial cells.  相似文献   

3.
4.
The objective of this work was to study the effect of epidermal growth factor (EGF) induced secretions of angiogenesis factors in adipose-derived stem cells (ADSCs) and the involvement of mitogen-activated protein kinases (MAPK). ADSCs were cultured and ELISA assays were performed to quantify the vascular endothelial growth factor, the hepatocyte growth factor, and the stromal derived factor-1 in ADSC-conditioned medium before and after EGF treatments and after pharmacological inhibition of MAPKs with PD98059, SB203580, and SP600125. The tube formation assay was used to test the effects of EGF treated and inhibitor treated ADSCs on the human umbilical vein endothelial cells (HUVECs) tube formation. Liposuction was applied and ADSCs were cultured successfully. The ADSCs released a variety of angiogenic factors, with the EGF treatments enhancing secretions and promoting the HUVEC tube formation. The MAPK inhibitors PD98059 and SP600125 increased the paracrine to promote tubular formation, while the SB203580 played an opposite role. In conclusion, (1) the in vitro cultured ADSCs secrete various angiogenic factors and the EGF amplifies the secretion and can enhance the ADSCs on the HUVEC tube formation. (2) ERK1/2 and JNK pathway may be involved in the enhanced secretion capacity of ADSCs while the p38 pathway may exert an opposite effect.  相似文献   

5.
目的观察低氧条件下HIF-1α/VEGF/Notch信号通路在人脐静脉内皮细胞(HUVEC)血管生成中的作用。 方法将HUVEC进行常氧和低氧[二氯化钴(CoCl2),200 μmol/L]诱导,再将常氧和低氧处理的HUVEC应用Notch1信号通路的抑制剂DAPT (30 μmol/L,24 h)和激活剂JAG-1 (30 μmol/L,24 h)干预。通过体外小管形成实验观察低氧对HUVEC血管生成能力的影响。应用RT-PCR和Western blot检测HUVEC中低氧诱导因子-1α (HIF-1α)、血管内皮生长因子(VEGF)、基质金属蛋白酶-9 (MMP-9)和Notch1信号分子(Notch1、Dell4和JAG-1)的mRNA和蛋白表达。通过Transwell迁移实验和伤口愈合实验观察低氧、DAPT、JAG-1对HUVEC迁移能力的影响。应用MTT法检测低氧及Notch1对HUVEC增殖的影响。两组间比较采用t检验,采用析因设计方差分析低氧和DAPT以及低氧和JAG-1对HUVEC迁移能力、距离、小管形成能力和细胞增殖的交互作用。 结果与常氧组比较,低氧组小管总长[(8.18±0.62)mm比(15.43±1.32)mm]增高,差异具有统计学意义(P < 0.05)。与常氧组比较,低氧组的HIF-1α、VEGF、MMP-9、Notch1、Dell4和JAG-1的mRNA相对表达量和蛋白相对表达量(1.01±0.03比4.43±0.35,1.02±0.03比3.55±0.28,0.98±0.04比3.24±0.25,1.01±0.03比3.22±0.25,0.99±0.02比2.89±0.22,1.02±0.04比2.43±0.19,0.98±0.01比3.13±0.24,0.98±0.02比2.67±0.21,0.97±0.03比2.45±0.19,1.01±0.03比2.44±0.19,1.00±0.04比2.30±0.18,1.03±0.05比2.27±0.18)均升高,差异有统计学意义(P均< 0.05)。Transwell迁移实验和伤口愈合实验显示,低氧条件下,DAPT干预使HUVEC的迁移能力降低,JAG-1干预使HUVEC的迁移能力升高(P均< 0.05)。小管形成和MTT法测定显示,低氧条件下,DAPT干预使HUVEC的小管形成能力和细胞增殖能力降低,JAG-1干预使HUVEC的小管形成能力和细胞增殖能力升高(P均< 0.05)。析因设计的方差分析结果显示,低氧和JAG-1对迁移细胞数、小管形成和细胞增殖能力交互作用具有协同作用(P < 0.05)。 结论低氧可通过激活HIF-1α/VEGF/Notch1信号通路提高HUVEC的血管生成能力、迁移能力和细胞增殖能力。  相似文献   

6.
Adhesion, migration and invasion of endothelial cells are prerequisites for the formation of blood vessels and have to be controlled on a subcellular level. We report that subconfluent human umbilical vein endothelial cells (HUVEC) are able to constitutively form podosomal adhesions that are sites of matrix metalloprotease concentration and matrix degradation. Importantly, incubation of serum-starved cells with VEGF or TNFalpha revealed the dependence of podosomes on cytokine signaling. Podosome formation was also stimulated by addition of monocytes to HUVEC. Microinjection/application of specific inhibitors or active/inactive mutants showed that regulatory pathways include Src kinase and RhoGTPase signaling, N-WASP activation and Arp2/3 complex-dependent actin nucleation. In sum, our data show that HUVEC displaying a migratory phenotype constitutively form f-actin-rich adhesions with podosomal characteristics downstream of cytokine signaling. We propose that HUVEC podosomes play an important role in endothelial cell migration and invasion.  相似文献   

7.
8.
Platelet endothelialcell adhesion molecule (PECAM)-1 has been implicated inangiogenesis, but a number of issues remain unsettled, including theindependent involvement of human PECAM-1 (huPECAM-1) in tumorangiogenesis and the mechanisms of its participation in vesselformation. We report for tumors grown in human skin transplanted on severe combined immunodeficiency mice that antibodies against huPECAM-1 (without simultaneous treatment with anti-VE-cadherin antibody) decreased the density of human, but not murine, vessels associated with the tumors. Anti-huPECAM-1 antibody alsoinhibited tube formation by human umbilical vein endothelial cells(HUVEC) and the migration of HUVEC through Matrigel-coated filters or during the repair of wounded cell monolayers. The involvement ofhuPECAM-1 in these processes was confirmed by the finding that expression of huPECAM-1 in cellular transfectants induced tube formation and enhanced cell motility. These data provide evidence of arole for PECAM-1 in human tumor angiogenesis (independent ofVE-cadherin) and suggest that during angiogenesis PECAM-1 participates in adhesive and/or signaling phenomena required for the motility ofendothelial cells and/or their subsequent organization into vascular tubes.

  相似文献   

9.
Uremic toxins such as indoxyl sulfate (IS) accumulate at a high level in end stage renal disease (ESRD) and can exhibit significant systemic endothelial toxicity leading to accelerated cardiovascular events. The precise molecular mechanisms by which IS causes endothelial dysfunction are unknown. We tested the hypothesis that IS negatively influences properties of endothelial cells, such as migration and tube formation, by depleting nitric oxide (NO) bioavailability, and that an NO donor can reverse these inhibitory effects. IS inhibited human umbilical vein endothelial cell (HUVEC) migration and formation of tubes on matrigel. Mechanistically, IS inhibited VEGF-induced NO release from HUVECs. An NO donor, SNAP, reversed IS-mediated inhibition of HUVEC migration as well as tube-formation. IS inhibited ERK 1/2 MAP kinase activity in a dose-dependent manner, but this was preserved by SNAP. Inhibition of ERK 1/2 with a pharmacological inhibitor (U0126) decreased HUVEC migration and tube formation; these effects too were prevented by SNAP. Further, IS stimulated activation of myosin light chain (MLC), potentially stimulating endothelial contractility, while SNAP decreased MLC activation. Thus, we conclude that the negative effects of IS on endothelial cells are prevented, to a major extent, by NO, via its divergent actions on ERK MAP kinase and MLC.  相似文献   

10.
11.
Mehmet Varol 《Cytotechnology》2018,70(6):1565-1573
Natural products have been used for centuries as the most potent remedies to cure many diseases including cancer diseases. Angiogenesis is defined as the formation of new capillaries from existing vessels and plays a key role in the tumorigenesis process. Barbatolic acid is a little known lichen-derived small-molecule. In the present study, barbatolic acid was isolated from the acetone extract of Bryoria capillaris, and its anti-breast cancer and anti-angiogenic potential was investigated using human umbilical vein endothelial cells (HUVECs), human breast ductal carcinoma (T-47D) and cisplatin-resistant BRCA2-mutated human breast TNM stage IV adenocarcinoma (HCC1428) cells. AlamarBlue? cell viability, lactate dehydrogenase cellular membrane degradation and PicoGreen? dsDNA quantitation assays were performed to determine the cytotoxic potential of barbatolic acid. Anti-angiogenic and anti-migratory activities were investigated using endothelial tube formation assay and scratch wound healing assay, respectively. Half maximal inhibitory concentration of barbatolic acid was found to be higher than 100 µM for HUVEC, HCC1428 and T-47D cells. The sub-cytotoxic concentrations such as 25 µM, 50 µM and 100 µM were applied to determine anti-angiogenic and anti-migratory activities. Although the sub-cytotoxic concentrations inhibited endothelial tube formation and cellular migration in a concentration depended manner, barbatolic acid was more effective on the migration of HCC1428 and T-47D breast cancer cells than the migration of HUVECs. Consequently, the findings suggest that barbatolic acid is a promising anti-angiogenic and anti-migratory agent and the underlying activity mechanisms should be investigated by further in vitro and in vivo experiments.  相似文献   

12.
Ischemia induces angiogenesis as a compensatory response. Although ischemia is known to causes synthesis and release of calcitonin gene-related peptide (CGRP), it is not clear whether CGRP regulates angiogenesis under ischemia and how does it function. Thus we investigated the role of CGRP in angiogenesis and the involved mechanisms. We found that CGRP level was increased in the rat hindlimb ischemic tissue. The expression of exogenous CGRP by adenovirus vectors enhanced blood flow recovery and increased capillary density in ischemic hindlimbs. In vitro, CGRP promoted human umbilical vein endothelial cell (HUVEC) tube formation and migration. Further more, CGRP activated AMP-activated protein kinase (AMPK) both in vivo and in vitro, and pharmacological inhibition of CGRP and cAMP attenuated the CGRP-activated AMPK in vitro. CGRP also induced endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs at Ser1177 and Ser633 in a time-dependent manner, and such effects were abolished by AMPK inhibitor Compound C. As well, Compound C blocked CGRP-enhanced HUVEC tube formation and migration. These findings indicate that CGRP promotes angiogenesis by activating the AMPK-eNOS pathway in endothelial cells.  相似文献   

13.
Our previous study indicated that Thy-1, which is expressed on blood vessel endothelium in settings of pathological and a specific of physiological, but not during embryonic, angiogenesis, may be used as a marker for angiogenesis. However, the function of Thy-1 during angiogenesis is still not clear. Here, we demonstrate that knock-down of the endogenous Thy-1 expression by Thy-1 siRNA transfection promoted the migration of human umbilical vein endothelial cells (HUVEC). In contrast, treatment with interleukin-1β (IL-1β) or phorbol-12-myristate-13-acetate (PMA) increased the level of Thy-1 protein and reduced the migration of HUVEC. These effects were abolished by pre-transfection of HUVEC with Thy-1 siRNA to knock-down the expression of Thy-1. Moreover, over-expression of Thy-1 by transfection of HUVEC with Thy-1 pcDNA3.1 decreased the activity of RhoA and Rac-1 and inhibited the adhesion, migration and capillary-like tube formation of these cells. These effects were prevented by co-transfection of the cell with constitutively active RhoA construct (RhoA V14). On the other hand, pre-treatment with a ROCK (a kinase associated with RhoA for transducing RhoA signaling) inhibitor, Y27632, abolished the RhoA V14-induced prevention effect on the Thy-1-induced inhibition of endothelial cell migration and tube formation. Taken together, these results indicate that suppression of the RhoA-mediated pathway might participate in the Thy-1-induced migration inhibition in HUVEC. In the present study, we uncover a completely novel role of Thy-1 in endothelial cell behaviors.  相似文献   

14.
Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1 alpha (HIF-1 alpha) expression via the Akt pathway.  相似文献   

15.
Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo   总被引:1,自引:0,他引:1  
Dihydrotanshinone I (DI), a naturally occurring compound extracted from Salvia miltiorrhiza Bunge, has been reported to have cytotoxicity to a variety of tumor cells. In this study, we investigated its anti-angiogenic capacity in human umbilical vein endothelial cells. DI induced a potent cytotoxicity to human umbilical vein endothelial cells, with an IC50 value of approximately 1.28 μg/ml.At 0.25-1μg/ml, DI dose-dependently suppressed human umbilical vein endothelial cell migration, invasion, and tube formation detected by wound healing, Transwell invasion and Matrigel tube formation assays, respectively. Moreover, DI showed significant in vivo anti-angiogenic activity in chick embryo chorioailantoic membrane assay. DI induced a 61.1% inhibitory rate of microvessel density at 0.2 μg/egg. Taken together, our results showed that DI could inhibit angio-genesis through suppressing endothelial cell proliferation, migration, invasion and tube formation, indicating that DI has a potential to be developed as a novel anti-angiogenic agent.  相似文献   

16.
A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 μM was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.  相似文献   

17.
Zhang H  Han Y  Tao J  Liu S  Yan C  Li S 《Experimental cell research》2011,(20):2904-2913
The migration of vascular endothelial cells plays a critical role in a variety of vascular physiological and pathological processes, such as embryonic development, angiogenesis, wound healing, re-endothelialization, and vascular remodeling. This study clarified the role and mechanism of a new vascular homeostasis regulator, Cellular repressor of E1A-stimulated genes (CREG), in the migration of primary human umbilical vein endothelial cells (HUVECs). A wound healing assay and transwell migration model showed that upregulation of CREG expression induced HUVEC migration and it was positively correlated with the expression of vascular endothelial growth factor. Furthermore, wild type integrin-linked kinase reversed the poor mobility of CREG knock-down HUVECs; in contrast, kinase-dead integrin-linked kinase weakened the migration of HUVECs. We also studied the effect of CREG on HUVEC migration by the addition of an mTOR inhibitor, recombinant vascular endothelial growth factor165, neutralizing antibody of vascular endothelial growth factor165 and AKT siRNA, and we concluded that CREG induces endothelial cell migration by activating the integrin-linked kinase/AKT/mTOR/VEGF165 signaling pathway.  相似文献   

18.
A series of oxazolopyrimidine‐based ureas and amides were designed, synthesized, and biologically evaluated for their antiproliferative and antiangiogenic activities. These compounds were identified to exhibit inhibitory activities against human umbilical vein endothelial cells (HUVEC) in vitro. Among these compounds, compound 22 effectively inhibited the migration and capillary‐like tube formation of human umbilical vein endothelial cells. It also exhibited a concentration‐dependent inhibition on capillary sprouting from the rat aorta rings. Preliminary mechanistic studies revealed that compound 22 suppressed protein kinases activation, by decreasing PI3K and ERK 1/2 phosphorylation. These results support the further investigation of this class of compounds as potential anticancer agents.  相似文献   

19.
The TEM8 gene is selectively expressed in tumor versus normal blood vessels, though its function in endothelial cell biology is not known. Towards the goal of clarifying this function, we tested whether TEM8 overexpression, or blocking TEM8's function with a dominant negative protein, would modulate endothelial cell activities. We found that TEM8-expressing endothelial cells migrated at a rate 3-fold greater than control cells in a monolayer denudation assay. Also, the addition of recombinant TEM8 extracellular domain (TEM8-ED) specifically inhibited both chemokinetic and chemotactic migration on collagen in the denudation and Boyden chamber assays, respectively. The TEM8-ED binds preferentially to collagen, and TEM8 expression enhanced endothelial adhesion to collagen 3-fold; the latter response was antagonized by the TEM8-ED. Consistent with the TEM8-ED acting as a dominant negative inhibitor of endogenously expressed protein were data showing that the TEM8-ED had no effect on the activation of beta1 integrin. TEM8 protein is present in human umbilical vein in situ and is expressed in low passage HUVEC in vitro. TEM8 protein expression in HUVEC was increased 5-fold by the initiation of tube formation, correlating expression of TEM8 with the angiogenic response. Taken together, these results indicate that TEM8 plays a positive role in endothelial cell activities related to angiogenesis.  相似文献   

20.
Mitsugumin 53 (MG53), which is expressed predominantly in striated muscle, has been demonstrated to be a myokine/cardiokine secreted from striated muscle under specific conditions. The important roles of MG53 in non-striated muscle tissues have also been examined in multiple disease models. However, no previous study has implicated MG53 in the control of endothelial cell function. In order to explore the effects of MG53 on endothelial cells, human umbilical vein endothelial cells (HUVECs) were stimulated with recombinant human MG53 (rhMG53). Then, rhMG53 uptake, focal adhesion kinase (FAK)/Src/Akt/ERK1/2 signalling pathway activation, cell migration and tube formation were determined in vitro. The efficacy of rhMG53 in regulating angiogenesis was also detected in postnatal mouse retinas. The results demonstrated that rhMG53 directly entered into endothelial cells in a cholesterol-dependent manner. The uptake of rhMG53 directly bound to FAK in endothelial cells, which resulted in a significant decrease in FAK phosphorylation at Y397. Accompanied by the dephosphorylation of FAK, rhMG53 uncoupled FAK-Src interaction and reduced the phosphorylation of Src at Y416. Consequently, the activation of FAK/Src downstream signalling pathways, such as Akt and ERK1/2, was also significantly inhibited by rhMG53. Furthermore, rhMG53 remarkably decreased HUVEC migration and tube formation in vitro and postnatal mouse retinal angiogenesis in vivo. Taken together, these data indicate that rhMG53 inhibits angiogenesis through regulating FAK/Src/Akt/ERK1/2 signalling pathways. This may provide a novel molecular mechanism for the impaired angiogenesis in ischaemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号