首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 861 毫秒
1.
在不同修剪手法下,对栽培桃树(Prunuspersica(L.)Batsch)不同母枝上的分枝模式进行了比较研究.从分枝模式来看:修剪后的母枝基本由3个不同的区域组成,基部是不萌发的潜伏芽形成的未分枝区域;中部是延迟分枝和多次分枝组成的分枝区域(主要的枝条类型有短枝、长枝和多次枝);顶部是被剪除的部分.我们通过隐式半马尔可夫模型来模拟这一分枝模式,主要是定量描述1次枝和多次枝在母枝上的数量及其分布状况.在上述模型中,未分枝区、延迟分枝区和多次分枝区称为瞬时态,被剪除的部分称为吸收态.模拟的结果与观察的结果进行对比后发现,两者具有很好的一致性.这说明隐式半马尔可夫模型是模拟植物分枝过程的一种有效方法,尽管隐式半马尔可夫链模型只是一个描述性的模型,但仍能对其所描述的生物现象进行解释,在预测修剪手法对母枝分枝模式影响方面比传统的方法具有明显的优势.本研究结果是建立三维虚拟桃树树冠分枝结构的基础.  相似文献   

2.
油菜(Brassica napus L.)具有复杂的分枝结构,其分枝为向顶式发生(出现)、向基式扩展,这种独特的生长模式使得油菜个体植株间的构型存在很大的差异.本研究利用与位置有关的生长延迟函数,计算各分枝从发生到扩展的时间间隔,来模拟油菜分枝这种独特的生长模式.此外,利用随机概率模型来模拟油菜植株间分枝数、主干和分枝的叶元数等.通过实际测量的四个油菜品种(ZY18, ZY50, ZS72和ZS11)的数据,采用最小二乘法对该模型的参数进行校准.结果表明,该随机模型能够模拟油菜植株拓扑结构,并根据参数估计的结果分析不同品种的拓扑结构差异性.本研究提出了新的简化方法模拟油菜分枝的生长模式,该模型可与油菜生长模型相结合,从而模拟油菜的动态生长过程.  相似文献   

3.
抱囊蕨属—四川早泥盆世一新属   总被引:1,自引:0,他引:1  
本文描述了四川早泥盆世陆地植物的一个新属种——江油抱囊蕨(Amplectosporangiumjiangyouense)。植物体茎轴裸露,等或不等二歧式分枝多次,在其远端区密集的二歧式分枝构成了一个椭圆状或梨状轮廓的能育顶枝系。孢子囊椭圆形,具短柄,呈单列侧生于能育枝的内侧。根据新植物显示的形态特征,除与一些早期陆地维管植物作了比较外,还初步探讨了它与种子植物珠被演化间的关系。  相似文献   

4.
三种模型对动物细胞生长模拟的比较   总被引:3,自引:0,他引:3  
用 Monod方程、Logistic方程和一个简单的结构模型来模拟批式培养动物细胞的生长。结果显示Moned方程和Logistic方程都不能很好拟合延迟期细胞的生长,而结构模型可以描述细胞从延迟期到静止期的生长过程。  相似文献   

5.
田间非饱和流条件下土壤硝态氮运移的模拟   总被引:5,自引:0,他引:5  
运用马尔可夫过程的理论 ,建立了土壤非饱和流条件下 ,模拟硝态氮通过土层运移的随机模型 .模型把时间可变系统假设为由紧密相连的时间均质情况相接而成 ,使得运用马尔可夫过程成为可能 ,在给定土壤水流量及汇源项转移强度的土壤层次中 ,给出了硝态氮溶质的统计分布 .模型将随机过程与确定性过程相结合 ,在计算各土层间的转移概率时考虑了硝态氮的作物吸收、淋洗、硝化和反硝化等主要过程 ,并用相关函数修正 N素转化关系 .在褐土农田土壤非饱和流条件下 ,用微区试验对该模型运行效果进行了验证 ,结果显示模拟计算值与实测值之间吻合性较好 ,说明模型可以用于相似类型区 ,预测和评价土壤 -作物系统中硝态氮溶质的运移行为 .  相似文献   

6.
舞钢玉兰芽种类与成枝成花规律的研究   总被引:17,自引:1,他引:16  
报道了舞钢玉兰芽的种类、分枝习性与成枝生长规律,拟花蕾、着生位置、解剖结构及其分化发育成花规律。从中发现:(1)当年生枝上有休眠芽、叶芽(侧叶芽和顶叶芽)、拟花蕾3种;(2)拟花蕾有缩台枝、芽鳞状托叶、雏枝、雏芽及雏蕾组成,因其外形似“花蕾“,称为“拟花蕾“;(3)缩台枝是枝与花着生的中间过滤枝变阶段,是由母枝顶端节间缩短、增粗的枝段和当年由雏枝生长的1次极短新枝所组成;(4)4-5月及7-8月前后两批形成的拟花蕾,均经过未分化发育期、花被分化发育期、雄蕊群分化发育期及离心皮雌蕊群分化发育期,各期均依次递后交错进行,但不逆转,也不能截然分开,直到翌春花分化发育全部结束,开花后才能结实;(5)芽鳞状托叶是托叶的变态,最外层薄革质,外面密被短柔毛,始落期6月中下旬,其余纸质--膜质,外面密被或疏被毛柔毛,翌春开花时脱落完毕;(6)雏蕾有雏梗、雏花及包被雏花的佛焰苞状托叶组成;(7)分枝习性与成枝生长规律与预生分枝及预生一同生分枝呈单阶无歧、单阶1歧生长规律,稀有单阶2歧生长规律。  相似文献   

7.
基因预测是指预测DNA序列中编码蛋白质的部分。随着多数生物基因组的测序工作的完成 ,基因预测更显得尤为重要。基因预测主要包括两种方法 ,首先是同源方法 ,也称为“外在方法” ,其次是基因预测方法或称为“内在方法”。主要对隐马尔可夫模型、傅立叶变换、动态规划等几种“外在方法”进行介绍。  相似文献   

8.
枝条与叶片的生长关系是植物形成不同冠层结构充分利用空间资源的一种策略, 有利于植株通过构型调整增强自身的光合效率和竞争力, 以适应不同的生境条件。在石羊河上游高寒退化草地, 利用ArcGIS建立研究区域的数字高程模型(DEM), 并提取样地坡度数据, 采用标准化主轴估计(SMA)方法, 研究了不同坡度狼毒(Stellera chamaejasme)种群枝与叶的生长。结果表明: 随着坡度增大, 狼毒叶大小、枝长度和分枝数均呈逐渐减小趋势; 狼毒分枝数与枝长度、叶片数与枝长度均呈异速生长关系, 枝长度增加的速度大于叶片数增加的速度, 分枝数增加的速度大于枝长度增加的速度; 不同坡度间的比较显示, 较大坡度上狼毒分枝数与枝长度、叶片数与枝长度的异速斜率均较大, 在枝长度一定的条件下, 较大坡度的狼毒具有更大的叶片数与枝长度的比值和分枝数与枝长度的比值。坡度差异造成环境因子和植被群落环境的变化, 进而影响狼毒的资源利用策略, 表现为枝条与叶片构型以及二者之间关系的变化, 反映了毒杂草较强表型可塑性的适应机制。  相似文献   

9.
嵌套式回归建立树木生物量模型   总被引:8,自引:0,他引:8       下载免费PDF全文
 该文介绍了一种建立树木生物量模型的简单快速方法——嵌套式回归。基本原理是以枝轴为基本单位, 逐级拟合。过程是把枝条分解成枝轴, 从枝轴到枝条, 再到单株, 拟合不同层次或尺度的生物量模型。建立枝轴生物量方程, 估计各级枝轴生物量, 将枝轴生物量(实测值或模拟值)总和起来便得到枝条生物量。由于样本单元之间有包含关系, 实际测定的样本很小, 具有快速实用的特点。检验结果显示, 模型预测值和实测值具有较高的一致性。  相似文献   

10.
思茅松天然林树冠结构模型   总被引:1,自引:0,他引:1  
以云南省普洱市思茅区思茅松天然林为研究对象,采用枝解析调查了34株思茅松样木的树冠数据,分析了一级枝枝长、枝径、着枝角度、弦长和树冠半径5个树冠形状变量的变化规律,分别构建其预估模型;分析了树冠结构变化,分别构建了一级枝轮枝高度预估模型、一级枝枝条数量预估模型和一级枝枝条数量累积预估模型,并采用独立样本进行模型统计精度检验。结果表明:8个预估模型的预测效果良好,精度达到91%以上,尤其是一级枝着枝角度模型和一级枝轮枝高度模型预测精度达到97%以上。研究结果合理准确描述思茅松树冠结构的变化,为思茅松天然林的经营管理提供科学依据。  相似文献   

11.
This study aims to explore and model the changes in growth unit (GU) branching patterns during tree ontogeny. The question was addressed in apple trees cv. "Fuji", by analysing the relative impact of GU length and within-tree position. The development of two 6-year-old trees was recorded over 6 years. The fate of axillary buds along each GU was represented as a sequence of symbols corresponding to five types of lateral growth: latent buds, short, medium, long, and floral lateral GUs. Based on an exploratory analysis of data and a priori hypotheses, a hidden semi-Markov chain was estimated from all of these GU sequences. This model was composed of six transient states representing successive branching zones along the GUs. The accuracy of this global model was a posteriori assessed by fitting the characteristic distributions computed from model parameters to the corresponding empirical characteristic distributions extracted from the observed sequences. The observed sequences were then grouped hierarchically according to the GU length, year of growth, and branching order. Comparing model parameters between these sub-groups revealed similarities between GUs. These similarities were based on particular branching zones whose composition and relative position within the GUs remained invariant across the subgroups: the latent zones, floral zone, and short-lateral zone. The probability of occurrence of the floral zone varied with the year, showing the alternate fruiting of "Fuji". It is shown that, during tree ontogeny, as GU length decreases, branching patterns tend to progressively simplify due to the disappearance of the most central zones and a progressive reduction in the length of the floral zone.  相似文献   

12.
Branching patterns of the growth units of monocyclic or bicyclic annual shoots on the main axis of 5-year-old red oaks were studied in a plantation in south-western France. For each growth unit, the production of axillary structures associated with each node was described in the form of a sequence. For a given category of growth units, homogeneous zones (i.e. zones in which composition in terms of type of axillary production does not change substantially) were identified on such sequences using a dedicated statistical model called a hidden semi-Markov chain. For instance, on the first growth unit of bicyclic annual shoots, a zone with 1-year-delayed branches was found systematically below a zone with buds and one-cycle-delayed branches. Branching patterns shown by the growth unit of monocyclic annual shoots and on the second growth unit of bicyclic annual shoots were very similar. Branches with a 1-year delay in development tended to be polycyclic at the top of the growth unit and monocyclic lower down. The number of nodes shown by the branched zone of the growth unit of monocyclic annual shoots was stable, irrespective of the total number of nodes of the growth unit. In contrast, the second growth unit of bicyclic annual shoots exhibited a correlation between the number of nodes in the branching zone and the total number of nodes. The contribution made by this method to understanding plant functioning is discussed.  相似文献   

13.
14.
Modelling branching patterns on 1-year-old trunks of six apple cultivars   总被引:3,自引:0,他引:3  
The structure resulting from branching on 1-year-old apple tree trunks was analysed in a set of apple cultivars with diverse branching and fruiting habits. Four different lateral types borne on successive nodes were observed when vegetative and flowering fates, as well as sylleptic and proleptic branching, were taken into account. The location and grouping of lateral types along the trunk were analysed for all cultivars, but are detailed for one cultivar only. This cultivar showed a succession of zones, each zone being characterized by its composition of lateral types. Statistical models-hidden semi-Markov chains-were built to take this structure into account and to characterize the cultivar's specific branching pattern. The models showed that most of the branching zones had a similar location in the different cultivars, even though zone composition and zone length differed among cultivars. On a more detailed scale, the nodes bearing a lateral, regardless of its type, were frequently followed by latent buds. The validity of the models and their biological interpretation are discussed with respect to parent shoot dynamics, hormonal gradients and competition between neighbouring buds.  相似文献   

15.
A three-dimensional (3D) model of the human airway tree is proposed using a deterministic algorithm that can generate a branching duct system in an organ. The algorithm is based on two principles: 1) the amount of fluid delivery through a branch is proportional to the volume of the region it supplies; and 2) the terminal branches are arranged homogeneously within the organ. These principles define the basic process of branching: generation of the dimensions and directionality of two daughter branches is governed by the properties of the parent branch and the region the parent supplies. The algorithm is composed of nine basic rules and four complementary rules. When the contour of an organ and the position of the trunk are specified, branches are successively generated by the algorithm. Applied to the human lung, the algorithm generates an airway tree that consists of approximately 54,000 branches. Its morphometric characteristics are in good agreement with those reported in the literature. The algorithm and the 3D airway model are useful for studying the structure-function relationship in the lung.  相似文献   

16.
17.
Despite the universality of branching patterns in marine modular colonial organisms, there is neither a clear explanation about the growth of their branching forms nor an understanding of how these organisms conserve their shape during development. This study develops a model of branching and colony growth using parameters and variables related to actual modular structures (e.g., branches) in Caribbean gorgonian corals (Cnidaria). Gorgonians exhibiting treelike networks branch subapically, creating hierarchical mother-daughter relationships among branches. We modeled both the intrinsic subapical branching along with an ecological-physiological limit to growth or maximum number of mother branches (k). Shape is preserved by maintaining a constant ratio (c) between the total number of branches and the mother branches. The size frequency distribution of mother branches follows a scaling power law suggesting self-organized criticality. Differences in branching among species with the same k values are determined by r (branching rate) and c. Species with rr/2 or c>r>0). Ecological/physiological constraints limit growth without altering colony form or the interaction between r and c. The model described the branching dynamics giving the form to colonies and how colony growth declines over time without altering the branching pattern. This model provides a theoretical basis to study branching as a simple function of the number of branches independently of ordering- and bifurcation-based schemes.  相似文献   

18.
The mechanisms by which the branching of epithelial tissue occurs and is regulated to generate different organ structures are not well understood. In this work, image analyses of the organ rudiments demonstrate specific epithelial branching patterns for the early lung and kidney; the lung type typically generating several side branches, whereas kidney branching was mainly dichotomous. Parameters such as the number of epithelial tips, the angle of the first branch, the position index of the first branch (PIFB) in a module, and the percentage of epithelial module type (PMT) were analysed. The branching patterns in the cultured lung and kidney, and in homotypic tissue recombinants recapitulated their early in vivo branching patterns. The parameters were applied to heterotypic tissue recombinants between lung mesenchyme and ureteric bud, and tip number, PIFB and PMT values qualified the change in ureter morphogenesis and the reprogramming of the ureteric bud with lung mesenchyme. All the values for the heterotypic recombinant between ureteric bud and lung mesenchyme were significantly different from those for kidney samples but similar to those of the lung samples. Hence, lung mesenchyme can instruct the ureteric bud to undergo aspects of early lung-type epithelial morphogenesis. Different areas of the lung mesenchyme, except the tracheal region, were sufficient to promote ureteric bud growth and branching. In conclusion, our findings provide morphogenetic parameters for monitoring epithelial development in early embryonic lung and kidney and demonstrate the use of heterotypic tissue recombinants as a model for studying tissue-specific epithelial branching during organogenesis.  相似文献   

19.
One of the first symptoms expressed by declining trees is reduced growth in stem diameter and length increment. The possibility of a relationship between length increment and crown thinning in beech (Fagus sylvatica L.) was investigated by developing a computer model to simulate first order branching patterns of the apical 2 m of monopodially branching beech trees, 70–100 years old, for a range of length increment rates. The model was based on values for branching angle, main axis and branch length increment, number of branches produced per year and branch mortality rates for six healthy and declining trees. Shoot growth rates in the apical 2 m of the sample trees ranged from about 5 cm/year (decline class 3) to 43 cm/ year (healthy). Simulations of branching patterns in the apical 2 m of trees growing at different rates indicated that, when growth rate exceeded about 20 cm/year, total first order branch length and area explored were independent of growth rate. When growth rates fell below this value there was a reduction in total area explored and first order branch length due primarily to the formation of fewer branches. More acute branching angles contributed to a reduction in the area explored. Growth rate-related crown thinning could increase the risk of bark necrosis and secondary pathogen infection during dry and/or hot spells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号