首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
禽流感病毒是人类致病性病毒,其变异性强、传播速度快、病亡率高,严重威胁了人民健康和国民经济。目前全球对禽流感疫情防控的前提和关键是早发现、早隔离、早诊断、早控制。因此研发敏感、快速、特异、能进行高通量样品检测的禽流感病毒检测技术,使人类能在更短时间内监测、检测禽流感病毒的病原感染情况,对禽流感的防控具有重要意义。本文对禽流感病毒快速检测技术研究进展进行简要介绍。  相似文献   

2.
针对家禽中流行较为广泛、危害相对大的H5亚型禽流感病毒的血凝素(HA)基因,通过分析流感数据库221个HA序列,在保守区内用Oligo6.0软件设计并合成了一对引物,建立了用于快速诊断H5亚型禽流感病毒的一步法RT-PCR方法,其扩增的目的片段大小为372bp。通过对H5亚型禽流感病毒尿囊液和棉拭子浸出液进行不同稀释倍数检测,结果表明病毒尿囊液最低检出量为10-4稀释;阳性棉拭子最低检出量为8倍稀释。用病毒分离和该方法同时检测不同脏器、口咽及泄殖腔棉拭子样品,结果表明该方法检测灵敏度比病毒分离低10~100倍。用该方法检测H1~H15亚型禽流感病毒和鸡新城疫病毒等其他14种禽病病原,仅有H5亚型禽流感病毒扩增出特异性目的条带。该方法具有方便快捷、特异性强、敏感性高等特点,为我国禽流感的快速诊断和分子流行病学调查提供了技术支撑。  相似文献   

3.
全球的微生物学、传染病学及流行病学家均十分关注禽流感及今冬明春可能发生的流行.本期刊登了近来有关禽流感的主要文献综述以及我国人禽流感的论著及病例,供读者阅读与参考.控制禽流感是一项复杂的多学科参与的系统工程,其内容不仅涉及病毒遗传特性的分析研究,快速、敏感而切实可行的实验室诊断技术,感染禽及疫区的处理,患者的诊断与治疗,疫苗的研究与生产,新药物的研发等诸多问题;还需要联系社会实际及经济等问题.因此控制禽流感必须采用综合措施.  相似文献   

4.
应用电子显微镜技术观察了马传染性贫血病毒、鸡喉头气管炎病毒、禽流感A型病毒,除观察到正常病毒粒子外,还分别发现了一些异常形态结构,诸如马传染性贫血病毒的长杆形粒子、鸡喉头气管炎病毒的微管结构及禽流感A型病毒的丝状体等,这些异常形态结构可能是各该病毒增殖过程中的某一特殊方式。  相似文献   

5.
禽流感与禽流感病毒研究进展   总被引:7,自引:1,他引:6  
对禽流感的症状、传播、感染、流行规律、疾病发生历史、流行监测、诊断、防治以及禽流感病毒的分类地位、命名、病毒粒子形态结构、病毒基因组结构、病毒复制、病毒变异的研究进展作了综合评述,并对该领域的研究热点和方向作了探讨。  相似文献   

6.
以禽流感病毒株Ck/HK/Yu22/02(H5N1)作为免疫原,利用常规杂交瘤技术和血凝抑制试验法成功地筛选出6株稳定分泌抗高致病性H5亚型禽流感病毒血凝素的单克隆抗体(单抗),分别命名为2F2、3C8、3FC1、7C6、10HD4和13G4.经血凝抑制试验法分析,结果发现这6株单抗具有特异性高、反应性强、识别谱宽且互补等特点.基于单抗2F2,初步建立了三种H5N1病毒诊断方法,经评估证实均具有很好的特异性.由此说明,研究制备的抗H5亚型禽流感病毒血凝素单抗可适用于H5N1病毒的诊断.  相似文献   

7.
野禽(主要是雁形目和鸻形目)被认为是禽流感病毒的天然宿主。北美和欧洲自二十世纪七十年代后陆续开展野禽禽流感病毒的监测。研究发现从野鸭和滨鸟及鸥类能分离到所有HA和NA亚型的禽流感病毒,而且野禽中禽流感病毒与家禽和人感染禽流感病毒的疫情密切相关。因而野禽禽流感病毒对家禽养殖业和人类健康构成了极大的威胁。本文将从禽流感病毒在野禽、家禽和人群中的传播、全球野禽禽流感病毒监测的主要结果以及监测方法、采样类型和检测方法进行归纳总结,以期能帮助我们更好地了解野禽禽流感病毒的生态分布和流行规律,从而使我们更为有效地预防和控制禽流感,应对未来可能出现的流感大流行。  相似文献   

8.
ELISA技术在禽流感诊断研究中的应用   总被引:3,自引:0,他引:3  
禽流感(AI)是目前禽类流行的主要疫病之一,给养禽业和人类健康带来了巨大危害。由于禽流感病毒血清型众多,致病疫情多样,因此,适时的检测和早期快速诊断是预防和控制禽流感的前提条件。ELISA方法以其特异、灵敏、快速、简便,可迅速检测大量样品,使用仪器设备少,利于基层操作等优点成为AI流行病学普查及早期快速诊断的最实用和有效的方法。  相似文献   

9.
禽流感病毒最新研究进展   总被引:7,自引:0,他引:7  
王乐  郭蓓 《生命科学》2006,18(1):35-40
本文针对2004年爆发的禽流感疫病,回顾了2004年至2005年期间禽流感病毒的研究进展。逆转录聚合酶链式反应技术为禽流感病毒的分型提供了一种快速、可靠、准确的方法。对H5N1禽流感病毒致病机制的研究发现,其强致病性在于它可以躲避人类抗病毒细胞因子的作用,NS1基因编码蛋白的92位谷氨酸在其中发挥了关键作用。由于禽流感疾病多引起结膜炎,并与病毒细胞受体的研究结果相结合,有科学家认为眼部特异性是禽流感病毒的一个总体特征。社会普遍关注禽流感疫苗的研制,人类和禽类流感A型病毒M2蛋白胞外区域的序列比对工作为疫苗研制提供了一条新的思路,依据神经氨酸酶抑制剂抑制病毒的出芽繁殖原理的疫苗正在研制过程中,而利用siRNA预防和治疗禽流感也是很有潜力的一种方法。禽流感病毒研究的另一个热点是病毒基因节段的重配问题。  相似文献   

10.
抗H5N1亚型禽流感病毒血凝素单克隆抗体的制备及鉴定   总被引:3,自引:0,他引:3  
目的建立稳定分泌抗H5N1亚型禽流感病毒血凝素单克隆抗体的杂交瘤细胞系,为进一步研究禽流感诊断技术奠定基础。方法以纯化的H5亚型禽流感病毒按常规方法免疫BALBc小鼠,最后一次免疫后第3天取其脾细胞与SP20细胞在聚乙二醇作用下融合,用选择性培养、有限稀释法克隆和血凝抑制试验进行筛选,对获得阳性克隆株用ELISA方法进行亚型鉴定,并用37株H5、H7、H9亚型AIV测定其特异性、覆盖性。结果最后获得了3株分泌特异性抗体的杂交瘤细胞,命名为1E5、4A4、4B1,经长期体外培养和冻存后复苏能稳定地分泌抗体。经鉴定,其亚型均为IgG1、kappa链。腹水HI效价1∶210~1∶216,细胞培养上清HI效价1∶26~1∶28。3株杂交瘤所分泌的单克隆抗体均能与本中心保存的全部20株H5亚型禽流感病毒分离株发生反应,而与15株H9亚型禽流感病毒分离株、2株H7亚型禽流感病毒分离株以及H1H4、H6H15亚型禽流感病毒标准毒株均不反应,与鸡新城疫病毒、鹅新城疫病毒、鹅腺病毒和鸡产蛋下降综合征病毒等均无交叉反应。结论所获3株单克隆抗体可用于禽流感病毒特异性诊断试剂的研制。  相似文献   

11.
目的:为研制检测H5亚型禽流感的压电免疫传感器。方法:用巯基丙酸在镀银电极石英晶体自组装巯基丙酸单分子膜再通过N-乙基-N’-(3-二甲氨基)丙基碳化二亚胺盐酸(EDC)和N-羟基琥珀酰亚胺(NHS)偶联抗H5亚型禽流感病毒的特异性单抗构建传感器芯片,建立了可以检测H5亚型禽流感病毒的免疫传感器。结果:结果表明,该法具有较好的特异性,不与H9亚型流感病毒和NDV反应;检测灵敏度达到10—50个EID50。结论:本文结果为检测禽流感病毒免疫传感器的进一步深入研究奠定了基础,这为其它相关病毒的监测提供了一种新途径。  相似文献   

12.
H7亚型禽流感病毒一步法RT-PCR检测方法的建立   总被引:1,自引:0,他引:1  
通过分析流感数据库45个H7亚型禽流感病毒的HA序列,在保守区内设计并合成引物,建立了一步法RT-PCR检测方法,扩增片段大小为501bp。通过对H7亚型禽流感病毒尿囊液和棉拭子浸出液不同滴度检测,证实病毒尿囊液最低检出量为105.5EID50/mL;阳性棉拭子最低检出量为103EID50/mL。用该方法检测H1~H15亚型禽流感病毒和鸡新城疫病毒等其他14种禽病病原进行检测,仅有H7亚型AIV有特异性目的条带,与其他均无交叉反应。从脏器及咽喉、泄殖腔棉拭子样品的病毒分离和RT-PCR方法比较,表明在10-1的样品浓度下,两者可以达到相同的检出量。表明该一步法RT-PCR方法具有特异性强、敏感性高和准确率高的特点。  相似文献   

13.
14.
禽流感疫苗研究进展   总被引:9,自引:0,他引:9  
禽流感是由正黏病毒科流感病毒属的A型流感病毒引起的 ,发生于各种家禽和野鸟的一种急性传染病。由于其重要的经济和公共卫生学意义 ,使得禽流感的防治显得突出重要。疫苗的使用是控制禽流感的主要手段。目前实际应用中仍以禽流感全病毒灭活疫苗为主 ,但由于其潜在的缺点使得人们将目光转向其它类型疫苗的研制。从常规疫苗、新型疫苗和交叉保护性疫苗三个方面对禽流感疫苗研究进展加以阐述。常规疫苗包括基因工程亚单位疫苗和重组活载体疫苗 :新型疫苗主要有冷适应流感弱毒疫苗 ,基因工程活流感病毒疫苗 ,复制缺陷型病毒疫苗 ,DNA疫苗 ,RNA复制子疫苗 ,表位疫苗等 :交叉保护性疫苗主要依据流感病毒表面的保守蛋白M和NP的特性 ,构建疫苗来达到交叉保护的目的。  相似文献   

15.
Avian influenza viruses (AIV) raise worldwide veterinary and public health concerns due to their potential for zoonotic transmission. While infection with highly pathogenic AIV results in high mortality in chickens, this is not necessarily the case in wild birds and ducks. It is known that innate immune factors can contribute to the outcome of infection. In this context, retinoic acid-inducible gene I (RIG-I) is the main cytosolic pattern recognition receptor known for detecting influenza A virus infection in mammalian cells. Chickens, unlike ducks, lack RIG-I, yet chicken cells do produce type I interferon (IFN) in response to AIV infection. Consequently, we sought to identify the cytosolic recognition elements in chicken cells. Chicken mRNA encoding the putative chicken analogs of CARDIF and LGP2 (chCARDIF and chLGP2, respectively) were identified. HT7-tagged chCARDIF was observed to associate with mitochondria in chicken DF-1 fibroblasts. The exogenous expression of chCARDIF, as well as of the caspase activation and recruitment domains (CARDs) of the chicken melanoma differentiation-associated protein 5 (chMDA5), strongly activated the chicken IFN-β (chIFN-β) promoter. The silencing of chMDA5, chCARDIF, and chIRF3 reduced chIFN-β levels induced by AIV, indicating their involvement in AIV sensing. As with mammalian cells, chLGP2 had opposing effects. While overexpression decreased the activation of the chIFN-β promoter, the silencing of endogenous chLGP2 reduced chIFN-β induced by AIV. We finally demonstrate that the chMDA5 signaling pathway is inhibited by the viral nonstructural protein 1. In conclusion, chicken cells, including DF-1 fibroblasts and HD-11 macrophage-like cells, employ chMDA5 for sensing AIV.  相似文献   

16.
The possible emergence of a pandemic influenza virus from the avian influenza virus (AIV) has become a serious threat. The isolation of viruses will be crucial for further virological analysis and the development of vaccines. However, currently, there is no simple method for facilitating the isolation of infectious AIV. Here, we have developed a simple method of capturing AIV using anionic magnetic beads. The method employed the capture of AIV (H5N1, H5N2, and H5N3) from liquid samples such as allantoic fluid (AF) and cell culture medium (CM) using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydride). After their incubation with AIV-containing samples, the magnetic beads were separated from the supernatant by applying a magnetic field. The absorption of AIV on the beads was confirmed by immunochromatography and an enzyme-linked immunosorbent assay, which indicated the presence of hemagglutinin, neuraminidase, and nucleoprotein of AIV. Furthermore, the infectivity in chicken eggs of AIV captured by magnetic beads was similar to that of the starting materials. The capture of AIV using magnetic beads coated with anionic polymers will contribute to the sufficient recovery of infectious AIV and approach for potential pandemic influenza viruses.  相似文献   

17.
禽流感病毒 (AIV)是甲 (A)型流感病毒 ,常引起禽类全身性感染或主要限于呼吸器官传染病 ,带来巨大的经济损失并严重威胁人类健康。对AIV的基因组、所编码的蛋白质及其功能、AIV毒力变异的分子基础、禽流感疫苗以及AIV与人流感的关系等进行概述。  相似文献   

18.
Avian influenza virus (AIV) subtype H5N1 was first discovered in the 1990 s and since then its emergence has become a likely source of a global pandemic and economic loss. Currently accepted gold standard methods of influenza detection, viral culture and rRT-PCR, are time consuming, expensive and require special training and laboratory facilities. A rapid, sensitive, and specific screening method is needed for in-field or bedside testing of AI virus to effectively implement quarantines and medications. Therefore, the objective of this study was to improve the specificity and sensitivity of an impedance biosensor that has been developed for the screening of AIV H5. Three major components of the developed biosensor are immunomagnetic nanoparticles for the separation of AI virus, a microfluidic chip for sample control and an interdigitated microelectrode for impedance measurement. In this study polyclonal antibody against N1 subtype was immobilized on the surface of the microelectrode to specifically bind AIV H5N1 to generate more specific impedance signal and chicken red blood cells (RBC) were used as biolabels to attach to AIV H5N1 captured on the microelectrode to amplify impedance signal. RBC amplification was shown to increase the impedance signal change by more than 100% compared to the protocol without RBC biolabels, and was necessary for forming a linear calibration curve for the biosensor. The use of a second antibody against N1 offered much greater specificity and reliability than the previous biosensor protocol. The biosensor was able to detect AIV H5N1 at concentrations down to 10(3) EID(50)ml(-1) in less than 2h.  相似文献   

19.
One of the fundamental unknowns in the field of influenza biology is a panoramic understanding of the role wild birds play in the global maintenance and spread of influenza A viruses. Wild aquatic birds are considered a reservoir host for all lowly pathogenic avian influenza A viruses (AIV) and thus serve as a potential source of zoonotic AIV, such as Australasian‐origin H5N1 responsible for morbidity and mortality in both poultry and humans, as well as genes that may contribute to the emergence of pandemic viruses. Years of broad, in‐depth wild bird AIV surveillance have helped to decipher key observations and ideas regarding AIV evolution and viral ecology including the trending of viral lineages, patterns of gene flow within and between migratory flyways and the role of geographic boundaries in shaping viral evolution (Bahl et al. 2009 ; Lam et al. 2012 ). While these generally ‘virus‐centric’ studies have ultimately advanced our broader understanding of AIV dynamics, recent studies have been more host‐focused, directed at determining the potential impact of host behaviour on AIV, specifically, the influence of bird migration upon AIV maintenance and transmission. A large number of surveillance studies have taken place in Alaska, United States—a region where several global flyways overlap—with the aim of detecting the introduction of novel, Australasian‐origin highly pathogenic H5N1 AIV into North America. By targeting bird species with known migration habits, long‐distance migrators were determined to be involved in the intercontinental movement of individual AIV gene segments, but not entire viruses, between the Australasian and North American flyways (Koehler et al. 2008 ; Pearce et al. 2010 ). Yet, bird movement is not solely limited to long‐distance migration, and the relationship of resident or nonmigratory and intermediate‐distance migrant populations with AIV ecology has only recently been explored by Hill et al. ( 2012 ) in this issue of Molecular Ecology. Applying a uniquely refined, multidimensional approach, Hill et al. validate the innovative use of stable isotope assays for qualifying migration status of wild mallards within the Pacific flyway. The authors reveal that AIV prevalence and diversity did not differ in wintering mallard ducks with different migration strategies, and while migrant mallards do indeed introduce AIV, these viruses do not circulate as the predominant viruses in resident birds. On the other hand, resident mallards from more temperate regions act as reservoirs, possibly contributing to the unseasonal circulation and extended transmission period of AIV. This study highlights the impact of animal behaviour on shaping viral evolution, and the unique observations made will help inform prospective AIV surveillance efforts in wild birds.  相似文献   

20.
Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号