首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Cassava biology and physiology   总被引:13,自引:0,他引:13  
Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation, which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil, thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4 species, pointing to the need for further research on cultivated and wild Manihot to further improve its photosynthetic potential and yield, particularly under stressful environments. Moreover, a wide range in values of K m (CO2) for the C3 photosynthetic enzyme Rubisco was found among cassava cultivars indicating the possibility of selection for higher affinity to CO2, and consequently higher leaf photosynthesis. Several plant traits that may be of value in crop breeding and improvement have been identified, such as an extensive fine root system, long leaf life, strong root sink and high leaf photosynthesis. Selection of parental materials for tolerance to drought and infertile soils under representative field conditions have resulted in developing improved cultivars that have high yields in favorable environments while producing reasonable and stable yields under stress.  相似文献   

2.
Response of cassava to water stress   总被引:4,自引:1,他引:3  
Summary Cassava (Manihot esculenta Crantz) is a staple food for a large sector of human population in the tropics. It is widely produced for its starchy roots by small farmers over a range of environments on poor infertile soils with virtually no inputs. It is highly productive under favorable conditions and produces reasonably well under adverse conditions where other crops fail. The crop, once established, cansurvive for several months without rain. There is a wide variation within the cassava germplasm for tolerance to prolonged drought and the possibility to breed and select for stable and relative high yields under favorable and adverse conditions does indeed exist. Research with several cassava clones at CIAT has shown that high root yield under mid—term stress is not incompatible with high yield under nonstress conditions. Plant types with high yield potential under both conditions (e.g. the hybrid CM 507-37) are characterized by having slightly higher than optimum leaf area index under nonstress conditions, higher leaf area ratio and more intensive and extensive fine root system.  相似文献   

3.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (P N) in field-grown plants, indicating the importance of selection for high P N. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf P N, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha−1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher P N, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such as in tropical high altitudes and in low-land sub-tropics, leaf P N is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments. An erratum to this article is available at .  相似文献   

4.
SNPs,SSRs and inferences on cassava’s origin   总被引:5,自引:0,他引:5  
Despite its importance as a staple food throughout the tropics, the root crop cassava (it Manihot esculenta ssp. esculenta) has traditionally not been a major focus of research. One basic question about cassava that remained unresolved until recently concerns the crop’s origin. This paper describes analyses of SNPs (single nucleotide polymorphisms) and SSR (simple sequence repeat) variation as a means of tracing cassava’s evolutionary and geographical origins. Genetic diversity was examined in a sample of 20 cassava varieties that are representative of germplasm diversity within the crop, and in 212 individuals collected from wild populations of two closely related Manihot species. SNP and indel variation was examined in portions of two low copy nuclear genes, BglA and Hnl. Inferences from these genes were compared to those from previously examined loci, including the low copy nuclear gene G3pdh and 5 SSR loci. For all genes examined, SNPs and SSR alleles are shared between domesticated cassava and a specific geographical subset of wild Manihot populations, which suggests the following: (1) Cassava was likely domesticated from a single wild Manihot species, M. esculenta ssp. flabellifolia, rather than from multiple hybridizing species, as traditionally believed; and (2) the crop most likely originated in the southern Amazon basin.  相似文献   

5.
Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9–10 billion by the end of the 21st century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer’s and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (PN) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C3 system is another ambitious approach that is currently being applied to the C3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C3-CC4 intermediate cassava), have shown high potential PN, high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher PN to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields.  相似文献   

6.
Increasing evidence suggests that in crops, nocturnal water use could represent 30% of daytime water consumption, particularly in semi‐arid and arid areas. This raises the questions of whether nocturnal transpiration rates (TRN) are (1) less influenced by drought than daytime TR (TRD), (2) increased by higher nocturnal vapor pressure deficit (VPDN), which prevails in such environments and (3) involved in crop drought tolerance. In this investigation, we addressed those questions by subjecting two wheat genotypes differing in drought tolerance to progressive soil drying under two long‐term VPDN regimes imposed under naturally fluctuating conditions. A first goal was to characterize the response curves of whole‐plant TRN and TRN/TRD ratios to progressive soil drying. A second goal was to examine the effect of VPDN increase on TRN response to soil drying and on 13 other developmental traits. The study revealed that under drought, TRN was not responsive to progressive soil drying and – intriguingly – that TRN seemingly increased with drought under high VPDN consistently for the drought‐sensitive genotype. Because TRD was concomitantly decreasing with progressive drought, this resulted in TRN representing up to 70% of TRD at the end of the drydown. In addition, under drought, VPDN increase was found not to influence traits such as leaf area or stomata density. Overall, those findings indicate that TRN contribution to daily water use under drought might be much higher than previously thought, that it is controlled by specific mechanisms and that decreasing TRN under drought might be a valuable trait for improving drought tolerance.  相似文献   

7.
Globally, cassava is the second most important root crop after potatoes and the fifth most important crop overall in terms of human caloric intake. In addition to its growing global importance for feed, fuel, and starch, cassava has long been vital to food security in Sub‐Saharan Africa. Climate change is expected to have its most severe impact on crops in food insecure regions, yet little is known about how cassava productivity will respond to climate change. The most important driver of climate change is globally increasing atmospheric CO2 concentration ([CO2]). However, the potential for cassava to enhance food security in an elevated [CO2] world is uncertain as greenhouse and open top chamber (OTC) study reports are ambiguous. Studies have yielded misleading results in the past regarding the effect of elevated [CO2] on crop productivity, particularly in cases where pots restricted sink growth. To resolve these conflicting results, we compare the response of cassava to growth at ambient (ca. 385 ppm) and elevated [CO2] (585 ppm) under field conditions and fully open air [CO2] elevation. After three and half months of growth at elevated [CO2], above ground biomass was 30% greater and cassava root tuber dry mass increased over 100% (fresh weight increased 89%). High photosynthetic rates and photosynthetic stimulation by elevated [CO2], larger canopies, and a large sink capacity all contributed to cassava's growth and yield stimulation. Cassava exhibited photosynthetic acclimation via decreased Rubisco capacity early in the season prior to root tuber initiation when sink capacity was smaller. Importantly, and in contrast to a greenhouse study, we found no evidence of increased leaf N or total cyanide concentration in elevated [CO2]. All of our results are consistent with theoretical expectations; however, the magnitude of the yield increase reported here surpasses all other C3 crops and thus exceeds expectations.  相似文献   

8.
Unlike most of the important food crops, sesame can survive drought but severe and repeated drought episodes, especially occurring during the reproductive stage, significantly curtail the productivity of this high oil crop. Genome‐wide association study was conducted for traits related to drought tolerance using 400 diverse sesame accessions, including landraces and modern cultivars. Ten stable QTLs explaining more than 40% of the phenotypic variation and located on four linkage groups were significantly associated with drought tolerance related traits. Accessions from the tropical area harboured higher numbers of drought tolerance alleles at the peak loci and were found to be more tolerant than those from the northern area, indicating a long‐term genetic adaptation to drought‐prone environments. We found that sesame has already fixed important alleles conferring survival to drought which may explain its relative high drought tolerance. However, most of the alleles crucial for productivity and yield maintenance under drought conditions are far from been fixed. This study also revealed that pyramiding the favourable alleles observed at the peak loci is of high potential for enhancing drought tolerance in sesame. In addition, our results highlighted two important pleiotropic QTLs harbouring known and unreported drought tolerance genes such as SiABI4, SiTTM3, SiGOLS1, SiNIMIN1 and SiSAM. By integrating candidate gene association study, gene expression and transgenic experiments, we demonstrated that SiSAM confers drought tolerance by modulating polyamine levels and ROS homeostasis, and a missense mutation in the coding region partly contributes to the natural variation of drought tolerance in sesame.  相似文献   

9.
This review concerns ear photosynthesis and its contribution to grain filling in C3 cereals. Ear photosynthesis is quantitatively important to grain filling, particularly in dry areas where source (i.e., assimilate) limitations can occur. Compared to the flag leaf, ear photosynthesis exhibits higher water stress tolerance. Several factors could be involved in the ear's “drought tolerance.” First, although degree of C4 metabolism in ear parts has been reported, current evidence supports only typical C3 metabolism. Second, recycling of respired CO2 (i.e., refixation) could have considerable impact on final crop yield by preventing loss of CO2. Because refixation of CO2 is independent of atmospheric conditions, water use efficiency (measured as total ear photosynthesis divided by transpiration) could be higher in the ear than in the flag leaf. Moreover, ear parts (in particular awns) show higher relative water content and better osmotic adjustment under water stress compared to the flag leaf. This capacity, in addition to persistence of photosynthetic components under drought (delayed senescence), might help the ear to continue to fix CO2 late in the grain filling period.  相似文献   

10.
11.
Cassava breeding: opportunities and challenges   总被引:4,自引:0,他引:4  
Although cassava is a major food crop, its scientific breeding began only recently compared with other crops. Significant progress has been achieved, particularly in Asia where cassava is used mainly for industrial processes and no major biotic constraints affect its productivity. Cassava breeding faces several limitations that need to be addressed. The heterozygous nature of the crop and parental lines used to generate new segregating progenies makes it difficult to identify parents with good breeding values. Breeding so far has been mainly based on a mass phenotypic recurrent selection. There is very little knowledge on the inheritance of traits of agronomic relevance. Several approaches have been taken to overcome the constraints in the current methodologies for the genetic improvement of cassava. Evaluations at early stages of selection allow for estimates of general combining ability effect or breeding values of parental lines. Inbreeding by sequential self-pollination facilitates the identification of useful recessive traits, either already present in the Manihot gene pool or induced by mutagenesis.  相似文献   

12.
Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, theBrassica oleracea var.acephala BoRS1 gene was transferred into tobacco throughAgrobacterium- mediated leaf disc transformation. The transgenic status and transgene expression of the transgenic plants was confirmed by polymerase chain reaction (PCR) analysis, Southern hybridization and semi-quantitative one step RT-PCR analysis respectively. Subsequently, the growth status under water stress, and physiological responses to water stress of transgenic tobacco were studied. The results showed that the transgenic plants exhibited better growth status under water stress condition compared to the untransformed control plants. In physiological assessment of water tolerance, transgenic plants showed more dry matter accumulation and maintained significantly higher levels of leaf chlorophyll content along with increasing levels of water stress than the untransformed control plants. This study shows thatBoRS1 is a candidate gene in the engineering of crops for enhanced water stress tolerance.  相似文献   

13.
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2O2, a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss‐of‐function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone‐like protein and interacted with stress‐related HSP40 and 2OG‐Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone‐like protein that possibly prevents drought stress‐related proteins from inactivation.  相似文献   

14.
Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (PN) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on PN was most apparent in sunflower. The drought tolerant sunflower retained ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (Gs), we observed no change or a reduction in Gs with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root‐systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat‐waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on PN was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi‐arid regions.  相似文献   

15.
Field trials with a large group of cassava germplasm were conducted at the seasonally-dry and hot environments in southwest Colombia to investigate photosynthetic characteristics and production under drought conditions. Measurement of net photosynthetic rate (P N), photosynthetic nitrogen use efficiency (PNUE), mesophyll conductance to CO2 diffusion (g m), and phosphoenolpyruvate carboxylase (PEPC) activity of upper canopy leaves were made in the field. All photosynthetic characteristics were significantly correlated with final dry root yield (Yield). Correlations among the photosynthetic traits were also significant. PEPC activity was highly significantly correlated with P N and PNUE, indicating the importance of the enzyme in cassava photosynthesis and productivity. Among a small selected group from the preliminary trial for yield performance, the second year Yield was highly significantly correlated with P N measured on the first year crop. Thus variations in the measured photosynthetic traits are genetically controlled and underpin variations in yield. One short-stemmed cultivar M Col 2215 was selected for high root dry matter content, high harvest index, and tolerance to drought. It was tested under the semi-arid conditions of the west coast of Ecuador; participating farmers evaluated cultivar performance. This cultivar was adopted by farmers and officially released in 1992 under the name Portoviejo 650.  相似文献   

16.
Wang L  Li X  Chen S  Liu G 《Biotechnology letters》2009,31(2):313-319
Leymus chinensis is an important grassland perennial grass. However, its drought tolerance requires to be improved. LEA (late embryogenesis abundant) genes are believed to confer resistance to drought and water deficiency. Using Agrobacterium-mediated transformation, a wheat LEA gene, TaLEA 3 , was integrated into L. chinensis. The transgenic lines showed enhanced growth ability under drought stress during which transgenic lines had increased the relative water content, leaf water potential, relative average growth rate, but decreased the malondialdehyde content compared with the non-transgenic plant. Thus, transgenic breeding is an efficient approach to enhance drought tolerance in L. chinensis.  相似文献   

17.
18.
Wheat (Triticum aestivum L.) is the largest cereal crop grown in Western Canada where drought during late vegetative and seed filling stages affects plant development and yield. To identify new physiochemical markers associated with drought tolerance, epidermal characteristics of the flag leaf of two wheat cultivars with contrasting drought tolerance were investigated. The drought resistant ‘Stettler’ had a lower drought susceptibility index, greater harvest index and water‐use efficiency than the susceptible ‘Superb’. Furthermore, flag leaf width, relative water content and leaf roll were significantly greater in Stettler than in Superb at moderate drought stress (MdS). Visible differences in epicuticular wax density on the adaxial flag leaf surfaces and larger bulliform cells were identified in Stettler as opposed to Superb. Mid‐infrared attenuated total internal reflectance spectra revealed that Stettler flag leaves had increased asymmetric and symmetric CH2 but reduced carbonyl esters on its adaxial leaf surface compared to Superb under MdS. X‐ray fluorescence spectra revealed a significant increase in total flag leaf Zn concentrations in Stettler in response to MdS. Such information on the microstructural and chemical features of flag leaf may have potential as markers for drought tolerance and thereby accelerate the selection and release of more drought‐resistant cultivars.  相似文献   

19.
夏玉米叶片水分变化与光合作用和土壤水分的关系   总被引:2,自引:0,他引:2  
冯晓钰  周广胜 《生态学报》2018,38(1):177-185
叶片是光合作用的重要器官,其含水量的变化必将影响光合作用,但关于叶片水分变化对光合作用的影响报道较少。以华北夏玉米为研究对象,利用三叶期不同水分梯度的持续干旱模拟试验资料,分析夏玉米叶片水分变化及其与叶片净光合速率和土壤水分的关系。结果表明:夏玉米叶片净光合速率对叶片水分变化的响应显著且呈二次曲线关系,叶片含水量约为70.30%时,叶片净光合速率为零;叶片含水量与土壤相对湿度呈非直角双曲线关系,叶片最大含水量约为85.14%。研究结果可为准确描述叶片水分变化对光合作用的影响及客观辨识夏玉米干旱的发生发展及监测预警提供参考。  相似文献   

20.
Crops with the C4 photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO2] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C4 plant responses to elevated [CO2] has been controversial. Recent evidence from free-air CO2 enrichment (FACE) experiments suggests that elevated [CO2] does not directly stimulate C4 photosynthesis. Nonetheless, drought stress can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and greater intercellular [CO2]. Therefore, unlike C3 crops for which there is a direct enhancement of photosynthesis by elevated [CO2], C4 crops will only benefit from elevated [CO2] in times and places of drought stress. Current projections of future crop yields have assumed that rising [CO2] will directly enhance photosynthesis in all situations and, therefore, are likely to be overly optimistic. Additional experiments are needed to evaluate the extent to which amelioration of drought stress by elevated [CO2] will improve C4 crop yields for food and fuel over the range of C4 crop growing conditions and genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号