首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

3.
4.
5.
A presynaptic membrane disturbance is an essential process for the release of various neurotransmitters. Ceramide, which is a tumor suppressive lipid, has been shown to act as a channel-forming molecule and serve as a precursor of ceramide-1-phosphate, which can disturb the cellular membrane. This study found that while permeable ceramide increases the rate of dopamine release in the presence of a Ca(2+)-ionophore, A23187, permeable ceramide-1-phosphate provoked its release even without the ionophore. The treatment of PC12 cells with the ionophore at concentrations < 2 microM produced ceramide via the sphingomyelin (SM) pathway with a concomitant release of dopamine, and no cell damage was observed. The addition of a Ca(2+) chelator, EGTA, to the medium inhibited the increase in the release of both the ceramide and dopamine. This suggests that ceramide might be produced by Ca(2+) and is implicated in the membrane disturbance associated with the release of dopamine as a result of its conversion to ceramide-1-phosphate. Consistent with these results, this study detected a membrane-associated and neutral pH optimum sphingomyelinase (SMase) whose activity was increased by Ca(2+). Together, these results demonstrate that ceramide can be produced via the activation of a neutral form of SMase through Ca(2+), and is involved in the dopamine release in concert with Ca(2+).  相似文献   

6.
Sphingosine kinase: biochemical and cellular regulation and role in disease   总被引:7,自引:0,他引:7  
Sphingolipids have emerged as molecules whose metabolism is regulated leading to generation of bioactive products including ceramide, sphingosine, and sphingosine-1-phosphate. The balance between cellular levels of these bioactive products is increasingly recognized to be critical to cell regulation; whereby, ceramide and sphingosine cause apoptosis and growth arrest phenotypes, and sphingosine-1-phosphate mediates proliferative and angiogenic responses. Sphingosine kinase is a key enzyme in modulating the levels of these lipids and is emerging as an important and regulated enzyme. This review is geared at mechanisms of regulation of sphingosine kinase and the coming to light of its role in disease.  相似文献   

7.
Sphingolipids, historically described as potential reservoirs for bioactive lipids, presently define a new family of cellular mediators, joining the well-established glycerolipid-derived mediators of signal transduction such as diacylglycerol, phosphatidylinositides, and eicosanoids. Sphingolipid metabolism is clearly involved in the regulation of cell growth, differentiation, and programmed cell death. Indeed, a majority of the greater than four thousand studies conducted on sphingolipids during the past five years were investigations of the role of sphingolipids as cellular bioregulators. Studies spanning more than a decade have shown multiple interactions and intersections of the sphingolipid-mediated pathways and the eicosanoid pathway. This review will discuss the emerging mechanisms by which sphingolipids induce inflammatory responses via the eicosanoid pathway in addition to linking previous literature on sphingolipids and inflammation with newer findings of distinct roles for sphingosine-1-phosphate in regulating cyclooygenase-2 and ceramide-1-phosphate in the regulation of cytosolic phospholipase A2alpha. Finally, the relationship between bioactive sphingolipids and inflammation is discussed.  相似文献   

8.
Sphingolipids are present in membranes of all eukaryotic cells. Bioactive sphingolipids also function as signaling molecules that regulate cellular processes such as proliferation, migration, and apoptosis. Human cytomegalovirus (HCMV) exploits a variety of cellular signaling pathways to promote its own replication. However, whether HCMV modulates lipid signaling pathways is an essentially unexplored area of research in virus-host cell interactions. In this study, we examined the accumulation of the bioactive sphingolipids and the enzymes responsible for the biosynthesis and degradation of these lipids. HCMV infection results in increased accumulation and activity of sphingosine kinase (SphK), the enzyme that generates sphingosine 1-phosphate (S1P) and dihydrosphingosine 1-phosphate (dhS1P). We also utilized a mass spectrometry approach to generate a sphingolipidomic profile of HCMV-infected cells. We show that HCMV infection results in increased levels of dhS1P and ceramide at 24 h, suggesting an enhancement of de novo sphingolipid synthesis. Subsequently dihydrosphingosine and dhS1P decrease at 48 h consistent with attenuation of de novo sphingolipid synthesis. Finally, we present evidence that de novo sphingolipid synthesis and sphingosine kinase activity directly impact virus gene expression and virus growth. Together, these findings demonstrate that host cell sphingolipids are dynamically regulated upon infection with a herpes virus in a manner that impacts virus replication.  相似文献   

9.
Sphingolipids play important roles in regulating cellular responses. Although mitochondria contain sphingolipids, direct regulation of their levels in mitochondria or mitochondria-associated membranes is mostly unclear. Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sphingomyelin (SM) to ceramide and phosphocholine, have been found in the mitochondria of yeast and zebrafish, yet their existence in mammalian mitochondria remains unknown. Here, we have identified and cloned a cDNA based on nSMase homologous sequences. This cDNA encodes a novel protein of 483 amino acids that displays significant homology to nSMase2 and possesses the same catalytic core residues as members of the extended N-SMase family. A transiently expressed V5-tagged protein co-localized with both mitochondria and endoplasmic reticulum markers in MCF-7 and HEK293 cells; accordingly, the enzyme is referred to as mitochondria-associated nSMase (MA-nSMase). MA-nSMase was highly expressed in testis, pancreas, epididymis, and brain. MA-nSMase had an absolute requirement for cations such as Mg2+ and Mn2+ and activation by the anionic phospholipids, especially phosphatidylserine and the mitochondrial cardiolipin. Importantly, overexpression of MA-nSMase in HEK293 cells significantly increased in vitro N-SMase activity and also modulated the levels of SM and ceramide, indicating that the identified cDNA encodes a functional SMase. Thus, these studies identify and characterize, for the first time, a mammalian MA-nSMase. The characterization of MA-nSMase described here will contribute to our understanding of pathways regulated by sphingolipid metabolites, particularly with reference to the mitochondria and associated organelles.  相似文献   

10.
Abstract

Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics.  相似文献   

11.
近年来,以细胞内氧化还原平衡失调为重要诱因,具有铁依赖性和以脂质过氧化物堆积引起细胞膜损伤为主要特征的细胞铁死亡备受关注。越来越多的研究表明,细胞铁死亡在疾病发生及防治方面具有重要作用。胞红蛋白(cytoglobin,CYGB),又名星状细胞激活蛋白 (stellate cell activating protein, STAP),是一种珠蛋白,不仅能可逆地结合氧分子,储存和传递氧气,同时在其氨基酸序列中含2个半胱氨酸残基,可形成分子内部的二硫键,在感受细胞内氧化还原状态变动时,改变自身空间结构,引起生物活性及下游信号通路的变化。同时,CYGB还具有一氧化氮双加氧酶活性,能够清除过量一氧化氮与活性氧物质超氧阴离子反应生成的有毒ONOO-,防止其对线粒体功能的破坏。而细胞内活氧物质和线粒体是影响细胞铁死亡的重要因素。因此,本综述主要围绕CYGB清除活性氧物质及调控一氧化氮代谢等的作用机制,并结合我们最近有关CYGB通过p53-YAP1轴调控细胞内脂质代谢的研究进行阐述,提出CYGB通过参与细胞铁死亡调控来行使功能,为心血管功能,肝纤维化及癌症发生等相关疾病的预防和治疗提供重要的理论依据。  相似文献   

12.
Sphingolipids are highly bioactive lipids. Sphingolipid metabolism produces key membrane components (e.g. sphingomyelin) and a variety of signaling lipids with different biological functions (e.g. ceramide, sphingosine-1-phosphate). The coordinated activity of tens of different enzymes maintains proper levels and localization of these lipids with key roles in cellular processes. In this review, we highlight the signaling roles of sphingolipids in cell death and survival. We discuss recent findings on the role of specific sphingolipids during these processes, enabled by the use of lipidomics to study compositional and spatial regulation of these lipids and synthetic sphingolipid probes to study subcellular localization and interaction partners of sphingolipids to understand the function of these lipids.  相似文献   

13.
Dose-dependent regulation of cellular processes is one important characteristic of signaling molecules. Although recent studies suggest that reactive oxygen species (ROS) may act as in vivo signaling molecules, the dose-dependent regulation of ROS on cellular processes together in one system needs to be evaluated. After treating cells with gradually increased O(2)(-), generated by the hypoxanthine-xanthine oxidase system, it was found that: (i) the proliferation of hepatoma cells firstly increased at 1-2 microM O(2)(-), then decreased markedly as the concentration increased; (2) at 8 or 16 microM O(2)(-), re-differentiation of hepatoma cells was induced, as indicated by the indices relating to cell malignancy or differentiation, such as cell surface charge, alpha-fetoprotein, gamma-glutamyltranspeptidase, tyrosine-alpha-ketoglutarate transaminase, cAMP, and the tumor's clonogenic potential; (iii) at 16 microM O(2)(-), accompanied by the re-differentiation of cells, cell apoptosis was also simultaneously induced as indicated by the appearance of apoptotic bodies, detached cells, and other apoptotic morphological features, as well as specific DNA fragmentation; (iv) at the highest concentration of O(2)(-) (32 microM) in this study, cell necrosis was dramatically induced as shown by Trypan blue exclusion; (v), an increase of intracellular Ca(2+) ([Ca(2+)](i)) was observed at all concentrations of O(2)(-) treatment, and this [Ca(2+)](i) increase was found to be involved in the regulation of O(2)(-) on the cellular processes. In conclusion, these results indicate that O(2)(-) could dose-dependently regulate the processes of cells, where Ca(2+) is one of its molecular targets, and hence provide a direct support for the hypothesis that ROS themselves are important signaling molecules.  相似文献   

14.
Vascular growth and remodeling responses entail several complex biochemical, molecular, and cellular responses centered primarily on endothelial cell activation and function. Recent studies reveal that changes in endothelial cell redox status critically influence numerous cellular events that are important for vascular growth under different conditions. It has been known for some time that oxidative stress actively participates in many aspects of angiogenesis and vascular remodeling. Initial studies in this field were largely exploratory with minimal insight into specific molecular mechanisms and how these responses could be regulated. However, it is now clear that intracellular redox mechanisms involving hypoxia, NADPH oxidases (NOX), xanthine oxidase (XO), nitric oxide and its synthases, and intracellular antioxidant defense pathways collectively orchestrate a redox balance system whereby reactive oxygen and nitrogen species integrate cues controlling vascular growth and remodeling. In this review, we discuss key redox regulation pathways that are centrally important for vascular growth in tissue health and disease. Important unresolved questions and issues are also addressed that requires future investigation.  相似文献   

15.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   

16.
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.  相似文献   

17.
Conway ME  Coles SJ  Islam MM  Hutson SM 《Biochemistry》2008,47(19):5465-5479
Redox regulation of proteins through oxidation and S-thiolation are important regulatory processes, acting in both a protective and adaptive role in the cell. In the current study, we investigated the sensitivity of the neuronal human cytosolic branched-chain aminotransferase (hBCATc) protein to oxidation and S-thiolation, with particular attention focused on functionality and modulation of its CXXC motif. Thiol specific reagents showed significant redox cycling between the reactive thiols and the TNB anion, and using NEM, four of the six reactive thiols are critical to the functionality of hBCATc. Site-directed mutagenesis studies supported these findings where a reduced kcat (ranging from 50-70% of hBCATc) for C335S, C338S, C335/8S, and C221S, respectively, followed by a modest effect on C242S was observed. However, only the thiols of the CXXC motif (C335 and C338) were directly involved in the reversible redox regulation of hBCATc through oxidation (with a loss of 40-45% BCAT activity on air oxidation alone). Concurrent with these findings, under air oxidation, the X-ray crystallography structure of hBCATc showed a disulphide bond between C335 and C338. Further oxidation of the other four thiols was not evident until levels of hydrogen peroxide were elevated. S-thiolation experiments of hBCATc exposed to GSH provided evidence for significant recycling between GSH and the thiols of hBCATc, which implied that under reducing conditions GSH was operating as a thiol donor with minimal S-glutathionylation. Western blot analysis of WT hBCATc and mutant proteins showed that as the ratio of GSH:GSSG decreased significant S-glutathionylation occurred (with a further loss of 20% BCAT activity), preferentially at the thiols of the CXXC motif, suggesting a shift in function toward a more protective role for GSH. Furthermore, the extent of S-glutathionylation increased in response to oxidative stress induced by hydrogen peroxide potentially through a C335 sulfenic acid intermediate. Deglutathionylation of hBCATc-SSG using the GSH/glutaredoxin system provides evidence that this protein may play an important role in cellular redox regulation. Moreover, redox associations between hBCATc and several neuronal proteins were identified using targeted proteomics. Thus, our data provides strong evidence that the reactive thiol groups, in particular the thiols of the CXXC motif, play an integral role in redox regulation and that hBCATc has redox mediated associations with several neuronal proteins involved in G-protein cell signaling, indicating a novel role for hBCATc in cellular redox control.  相似文献   

18.
p53 and regulation of bioactive sphingolipids   总被引:1,自引:0,他引:1  
Both the sphingolipid and p53 pathways are important regulators- and apparent collaborators-of cell-fate decisions. Whereas some investigations have suggested that ceramide and more complex sphingolipids function upstream of p53 or in a p53-independent manner, other studies propose that p53-dependent alterations in these sphingolipids can also contribute to apoptosis. Further studies focusing on sphingolipid metabolizing enzymes have revealed that they function similarly both upstream and downstream of p53 activation. However, whereas various components of the sphingolipid and p53 pathways may simultaneously function to elicit apoptosis and/or growth inhibition, SMase and SK1 may undergo explicit regulation by p53 that could contribute to ceramide-induced senescence in cells. Thus, we propose that regulation of bioactive sphingolipid signaling molecules could be of therapeutic benefit in the treatment of p53-dependent cancers.  相似文献   

19.
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.  相似文献   

20.
Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1(-/-) or TSC2(-/-) mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18(-/-) and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号