首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   18篇
  国内免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   20篇
  2013年   13篇
  2012年   14篇
  2011年   27篇
  2010年   12篇
  2009年   10篇
  2008年   16篇
  2007年   18篇
  2006年   16篇
  2005年   10篇
  2004年   18篇
  2003年   9篇
  2002年   20篇
  2001年   14篇
  2000年   10篇
  1999年   10篇
  1998年   7篇
  1997年   8篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1971年   2篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
1.
The biochemical signaling mechanisms involved in transducing the effects of tumor necrosis factor alpha (TNF alpha) and gamma-interferon (gamma-IFN) on leukemia cell differentiation are poorly defined. Recent studies established the existence of a sphingomyelin cycle that operates in response to the action of vitamin D3 on HL-60 cells and that may transduce the effects of vitamin D3 on cell differentiation (Okazaki, T., Bell, R., and Hannun, Y. (1989) J. Biol. Chem. 264, 19076-19080). The effects of TNF alpha and gamma-IFN on sphingomyelin turnover were determined, and the specificity and role of sphingomyelin hydrolysis in HL-60 human promyelocytic leukemia cells with 20% hydrolysis of sphingomyelin at 15 min, 40% hydrolysis at 30-60 min, and return to base line at 2 h. The hydrolyzed sphingomyelin (18 pmol/nmol total phospholipid) was accompanied by the concomitant generation of ceramide (11.2 pmol/nmol total phospholipid). gamma-IFN also caused reversible hydrolysis of sphingomyelin with onset at 1 h and peak effect at 2 h. This sphingomyelin cycle appeared to be specific to the monocytic pathway of HL-60 differentiation, since it was not activated by retinoic acid or dibutyryl cAMP, inducers of granulocytic differentiation, nor with phorbol myristate acetate, an inducer of macrophage-like differentiation. Addition of synthetic ceramide or bacterial sphingomyelinase induced monocytic differentiation of HL-60 cells. Cell-permeable ceramide also caused prompt down-regulation of mRNA for the c-myc protooncogene. The time course of c-myc down-regulation was consistent with the action of ceramide as the mediator of TNF alpha action. These results suggest that sphingomyelin turnover may be an important signaling mechanism transducing the actions of TNF alpha and gamma-IFN with specific function in cell differentiation.  相似文献   
2.
目的:探讨新生儿肺炎(neonatal pneumonia,NP)的临床表现及x线特征,以提高对NP的临床认识。方法:选择2011年6月至2012年10月在我院确诊为NP的新生儿73例,均经x线检查,回顾性分析患儿的临床资料,总结并分析患儿的临床表现及x线特征。结果:NP患儿的临床症状主要表现为呼吸急促、发绀、咳嗽、吐沫、呛奶和三凹征,部分患儿体温正常;NP的x线影像表现具有多样性,以不同程度的支气管肺炎多见,主要表现为肺纹理增多增密,局部肺野透光度降低或透光度增强。结论:NP患儿的临床症状以呼吸急促、发绀、咳嗽、吐沫、呛奶和三凹征为主,x线检查可为NP的早期诊断提供重要的临床信息,临床医师应根据NP患儿的x线影像的多样性,密切结合患儿的临床症状,做出综合分析。  相似文献   
3.
目的:比较异丙酚和氯胺酮对大鼠离体缺血再灌注损伤心肌脂质过氧化的影响。方法:成年Wistar大鼠18只,雌雄不拘。体重240-300g,随机分为3组(T1=6):心肌缺血再灌注损伤组(I/R组),异丙酚组(P组),氯胺酮组(K组)。采用Langendorff灌装置建立离体心脏缺血再灌注模型,将心脏连接至Langendorff逆灌装置,3组均以K-H液平衡灌注10min后,再分别以K.H液、含30μmol/L。异丙酚的K-H液、含10μmol-L-1氯胺酮的K-H液灌注10min,然后全心停灌25min,再分别以停灌前相同的灌注液恢复灌注30min。留取冠脉流出液测定总LDH活性;灌注末取左室心肌组织置于2.5%的戊二醛固定,观察心肌的超微结构;心尖部心肌组织留待检测8-异前列腺素和SOD活性。结果:与I/R组比较,P组8-异前列腺素含量降低,SOD活性升高,LDH活性降低(P〈0.05);K组8-异前列腺素含量,SOD及LDH活性均无统计学意义(P〉0.05);与P组比较,K组8-异前列腺素含量升高,SOD及LDH活性降低(P〈0.05);P组心肌超微结构损伤较m组和K组也明显改善。结论:异丙酚可显著减轻心肌缺血再灌注损伤大鼠的脂质过氧化和心肌缺血再灌注损伤,而氯胺酮没有抗心肌缺血再灌注损伤心肌脂质过氧化的作用。  相似文献   
4.
5.
6.
Previous studies have demonstrated that several splice variants are derived from both the caspase 9 and Bcl-x genes in which the Bcl-x splice variant, Bcl-x(L) and the caspase 9 splice variant, caspase 9b, inhibit apoptosis in contrast to the pro-apoptotic splice variants, Bcl-x(s) and caspase 9. In a recent study, we showed that ceramide induces the dephosphorylation of SR proteins, a family of protein factors that regulate alternative splicing. In this study, the regulation of the alternative processing of pre-mRNA of both caspase 9 and Bcl-x(L) was examined in response to ceramide. Treatment of A549 lung adenocarcinoma cells with cell-permeable ceramide, D-e-C(6) ceramide, down-regulated the levels of Bcl-x(L) and caspase 9b mRNA and immunoreactive protein with a concomitant increase in the mRNA and immunoreactive protein levels of Bcl-x(s) and caspase 9 in a dose- and time-dependent manner. Pretreatment with calyculin A (5 nm), an inhibitor of protein phosphatase-1 (PP1) and protein phosphatase 2A (PP2A) blocked ceramide-induced alternative splicing in contrast to okadaic acid (10 nm), a specific inhibitor of PP2A at this concentrations in cells, demonstrating a PP1-mediated mechanism. A role for endogenous ceramide in regulating the alternative splicing of caspase 9 and Bcl-x was demonstrated using the chemotherapeutic agent, gemcitabine. Treatment of A549 cells with gemcitabine (1 microm) increased ceramide levels 3-fold via the de novo sphingolipid pathway as determined by pulse labeling experiments and inhibition studies with myriocin (50 nm), a specific inhibitor of serine palmitoyltransferase (the first step in de novo synthesis of ceramide). Treatment of A549 cells with gemcitabine down-regulated the levels of Bcl-x(L) and caspase 9b mRNA with a concomitant increase in the mRNA levels of Bcl-x(s) and caspase 9. Again, inhibitors of ceramide synthesis blocked this effect. We also demonstrate that the change in the alternative splicing of caspase 9 and Bcl-x occurred prior to apoptosis following treatment with gemcitabine. Furthermore, doses of D-e-C(6) ceramide that induce the alternative splicing of both caspase 9 and Bcl-x-sensitized A549 cells to daunorubicin. These data demonstrate a role for protein phosphatases 1 (PP1) and endogenous ceramide generated via the de novo pathway in regulating this mechanism. This is the first report on the dynamic regulation of RNA splicing of members of the Bcl-2 and caspase families in response to regulators of apoptosis.  相似文献   
7.
Gaucher’s disease is caused by defects in acid β-glucosidase 1 (GBA1) and has been also proposed as an inflammatory disease. GBA1 cleaves glucosylceramide to form ceramide, an established bioactive lipid, and defects in GBA1 lead to aberrant accumulation in glucosylceramide and insufficient formation of ceramide. We investigated if the pro-inflammatory kinase p38 is activated in Gaucher’s disease, since ceramide has been proposed to suppress p38 activation. Three Gaucher’s disease mouse models were employed, and p38 was found to be activated in lung and liver tissues of all Gaucher’s disease mice. Most interestingly, neuronopathic Gaucher’s disease type mice, but not non-neuronopathic ones, displayed significant activation of p38 and up-regulation of p38-inducible proinflammatory cytokines in brain tissues. In addition, all type of Gaucher’s disease mice also showed increases in serum IL-6. As cellular signalling is believed to represent an in vivo inflammatory phenotype in Gaucher’s disease, activation of p38 and possibly its-associated formation of proinflammatory cytokines were assessed in fibroblasts established from neuronopathic Gaucher’s disease mice. In mouse Gaucher’s disease cells, p38 activation and IL-6 formation by TNF-α treatment were enhanced as compared to those of wild type. Furthermore, human fibroblasts from Gaucher’s disease patients also displayed increases in p38 activation and IL-6 formation as comparison to healthy counterpart. These results raise the potential that proinflammatory responses such as p38 activation and IL-6 formation are augmented in Gaucher’s disease.  相似文献   
8.
9.
The Niemann‐Pick type C is a rare metabolic disease with a severe neurodegenerative phenotype characterized by an accumulation of high amounts of lipids (cholesterol and sphingolipids) in the late endosomal/lysosomal network. It is caused by loss‐of‐function point mutations in either NPC1 or NPC2, which seem to mediate proper intracellular lipid transport through endocytic pathway. In this study, we show that yeast cells lacking Ncr1p, an orthologue of mammalian NPC1, exhibited a higher sensitivity to hydrogen peroxide and a shortened chronological lifespan. These phenotypes were associated with increased levels of oxidative stress markers, decreased levels of antioxidant defences and mitochondrial dysfunctions. Moreover, we report that Ncr1p‐deficient cells displayed high levels of long chain bases (LCB), and that Sch9p‐phospho‐T570 and Sch9p levels increased in ncr1Δ cells through a mechanism regulated by Pkh1p, a LCB‐activated protein kinase. Notably, deletion of PKH1 or SCH9 suppressed ncr1Δ phenotypes but downregulation of de novo sphingolipid biosynthesis had no protective effect, suggesting that LCBs accumulation may result from an increased turnover of complex sphingolipids. These results suggest that sphingolipid signalling through Pkh1p‐Sch9p mediate mitochondrial dysfunction, oxidative stress sensitivity and shortened chronological lifespan in the yeast model of Niemann‐Pick type C disease.  相似文献   
10.
W Khan  S el Touny  Y A Hannun 《FEBS letters》1991,292(1-2):98-102
The ability of arachidonic acid and other fatty acids to induce phosphorylation of endogenous substrates and the role of protein kinase C in mediating these effects were examined. In a cell-free cytosolic system derived from human platelets, arachidonic, oleic, and other cis-unsaturated fatty acids induced a dose-dependent phosphorylation of several endogenous substrates. These substrates form a subset of phorbol ester-induced phosphorylations. Multiple lines of evidence suggested the direct involvement of protein kinase C in mediating fatty acid-induced phosphorylations. These observations suggest that arachidonic acid and other unsaturated fatty acids are capable of activating protein kinase C in a physiologic environment resulting in the phosphorylation of multiple endogenous substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号